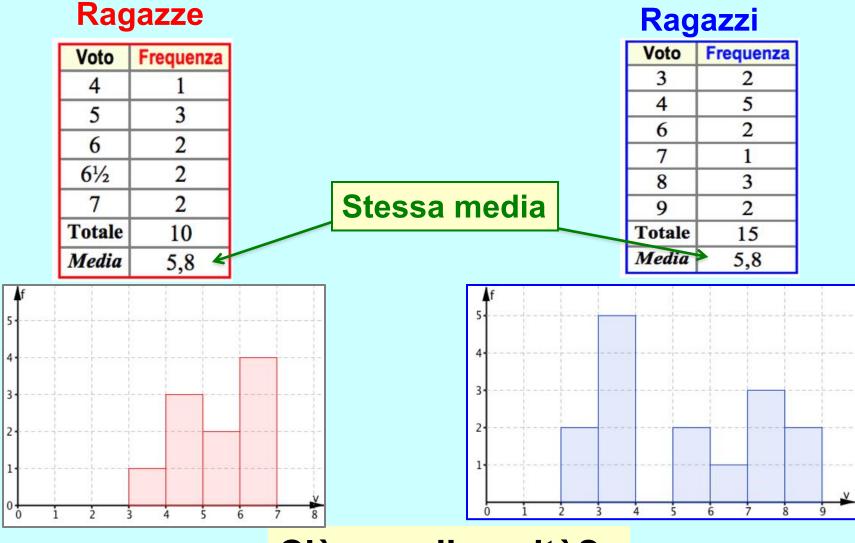
Misure di variabilità: Varianza e deviazione standard

Perché la variabilità?

Tabelle e grafici sono 'ingombranti', lunghi da leggere e da riprodurre per analizzare le risposte di una collettività, perciò si sintetizzano le risposte con un valore medio, ad esempio la media.

Ma la sola media porta informazioni sufficienti per confrontare più gruppi di dati? Ecco un esempio per riflettere.

Ecco i voti a un compito di matematica di ragazzi e ragazze



Daniela Valenti, 2020

C'è una diversità?

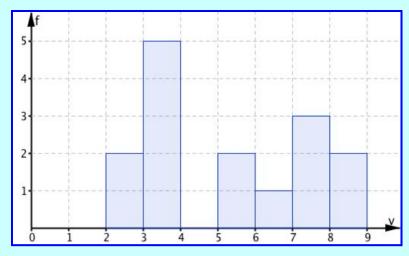
I voti a un compito di matematica di ragazzi e ragazze

Ragazze

I voti delle ragazze sono 'concentrati' vicino alla media

Le ragazze hanno voti molto simili, vicini alla media

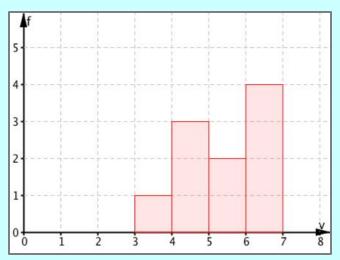
Ragazzi



I voti dei ragazzi sono 'dispersi' più lontano dalla media

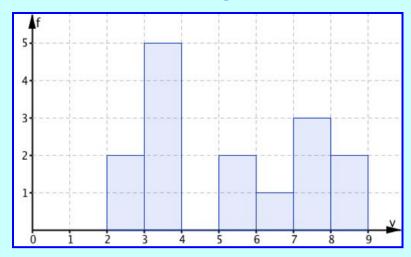
Fra i ragazzi c'è un gruppo con voti insufficienti, compensato da un gruppo con voti molto buoni.

Ragazze



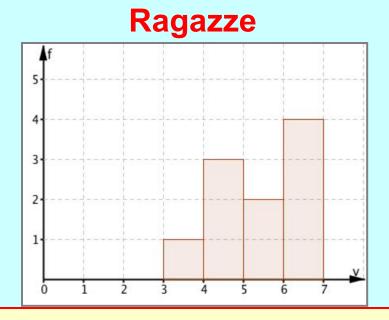
I voti delle ragazze sono 'concentrati' vicino alla media

Ragazzi

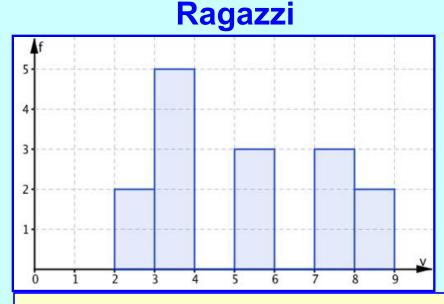


I voti dei ragazzi sono 'dispersi' più lontano dalla media

Il solo calcolo della media trascura la dispersione o variabilità dei dati



I voti delle ragazze sono 'concentrati' vicino alla media



I voti dei ragazzi sono 'dispersi' più lontano dalla media

La valutazione della variabilità non può essere limitata all'aspetto dell'istogramma, perciò la statistica suggerisce vari metodi per esprimere la variabilità con un un numero.

Attività. Varianza e deviazione standard

Completa la scheda di lavoro per misurare la variabilità di un insieme di dati.

Che cosa hai trovato?

- La varianza.
- La deviazione standard.
- Proprietà di varianza e deviazione standard.

Riflessioni sui risultati ottenuti

A. La varianza

Quesito1

Il gruppo delle 10 ragazze ha ottenuto i seguenti voti:

Il voto medio M_1 del gruppo è 5,8.

Gli scarti dalla media, sono dati da:

$$4-5,8=-1,8$$

$$5 - 5.8 = -0.8$$
 (3 volte)

$$6 - 5.8 = 0.2$$
 (2 volte)

$$6,5 - 5,8 = 0,7$$
 (2 volte)

$$7 - 5.8 = 1.2$$
 (2 volte)

- a. Quanto vale la somma S degli scarti? S = 0
- b. Che cosa puoi dire sul segno degli scarti?
 Gli scarti positivi sono compensati dagli scarti negativi.

c. Perché non puoi valutare la variabilità con la media
$$M_S$$
 degli scarti? Perché otterrei sempre $M_S = 0$.

d. Per superare le difficoltà legate al segno degli scarti, la statistica suggerisce di valutare la variabilità con la varianza σ², data dalla media dei quadrati degli scarti.

$$\sigma^2 = \frac{(4-5,8)^2 + (5-5,8)^2 \cdot 3 + (6-5,8)^2 \cdot 2 + (6,5-5,8)^2 \cdot 2 + (7-5,8)^2 \cdot 2}{10} \approx 0,91$$

B. Varianza e deviazione standard

Quesito 2

Per avere una valutazione della variabilità confrontabile con i dati, la statistica introduce la *deviazione standard* o, detta anche 'scarto quadratico medio'.

Deviazione standard dei voti delle ragazze:

$$\sigma = \sqrt{\sigma^2} \cong 0.95$$

B. Varianza e deviazione standard

Quesito 3: due serie di dati 'insoliti'

A partire dalle due serie di dati rappresentati dalle tabelle valuta:

Dati A, media $M_A = 6$, varianza $\sigma_A^2 = 0$, deviazione standard $\sigma_A = 0$

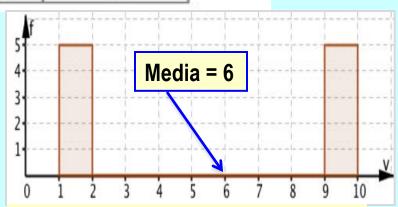
Dati B, media $M_B = 6$, varianza $\sigma_B^2 = 16$, deviazione standard $\sigma_B = 4$

A				
Voto	Frequenza			
6	10			

9		 -
7		
6 - 5 -	Media = 6	
3		
2		
1		

Dati tutti uguali, ottengo $\sigma^2 = 0$ e quindi $\sigma = 0$

В			
Voto	Frequenza		
2	5		
10	5		



Dati Iontani dalla media, ottengo $\sigma^2 = 16$ e quindi $\sigma = 4$

Vocabolario statistico

Indici statistici

Varianza e deviazione standard sono anche detti 'Indici di variabilità' o 'Indici di dispersione'.

E così si dice che media, mediana e moda sono 'Indici di posizione' o 'Indici di tendenza centrale'

C. Varianza e deviazione standard con foglio di calcolo

Quesito 4

Esegui il lavoro richiesto e scrivi qui sotto le risposte alle domande.

a. Completa la tabella qui sotto

Voti ragazze	Media = 5,8	Varianza ≅ <mark>0,91</mark>	Dev. Stand. ≅ 0,95
Voti ragazzi	Media = 5,8	Varianza ≅ 4,56	Dev. Stand. ≅ 2,14

- b. Cosa osservi se confronti la varianza di ragazze e ragazzi?
 La varianza dei ragazzi è più grande (circa quattro volte)
- c. Cosa osservi se confronti la dev. standard di ragazze e ragazzi?
 La dev.standard dei ragazzi è più grande (circa il doppio)

Con il foglio di calcolo

Media: Media[C2:C16]

Varianza: Varianza[C2:C16]

Deviazione standard: DS[C2:C16]

	Α	В	С	D
1	RAGAZZE	RAGAZZE	RAGAZZI	RAGAZZI
2	4		3	
3	5		3	
4	5		4	
5	5		4	
6	6		4	
7	6		4	
8	6.5		4	
9	6.5		6	
10	7		6	
11	7		7	
12	Media	5.8	8	
13	Varianza	0.91	8	
14	Dev.Stand.	0.95	8	
15			9	
16			9	
17			Media	5.8
18			Varianza	4.56
19			Dev.Stand.	2.14

D. Media, varianza e deviazione standard con un dato 'anomalo'

Quesito 5

Qual è l'effetto dell'ultimo dato tanto più grande degli altri?

Sostituire solo 7 con 70, molto più grande degli altri

dati, ha fatto passare:

la media da 5,8 a 12,1;

la varianza da 0,91 a 373,24;

la deviazione standard da 0,95 a 19,32.

Media, varianza e deviazione standard sono fortemente influenzate dai dati anomali.

RAGAZZE	RAGAZZE	VOTO NUOVO	VOTO NUOVO
4		4	
5		5	
5		5	
5		5	
6		6	
6		6	
6.5		6.5	
6.5		6.5	
7		7	
7		70	
Media	5.8	Media2	12.1
Varianza	0.91	Varianza2	373.24
Dev.Stand.	0.95	Dev.Stand2	19.32

E. Proprietà di varianza e deviazione standard

Quesito 6

RAGAZZE	RAGAZZE	RAGAZZE*2	RAGAZZE*2	
4		8		
5		10		
5		10		
5		10		
6		12		
6		12		
6.5		13		
6.5		13	0.4.4	0.01.4
7		14	3,64 =	0.91×4
7		14		
Media	5.8	Media2	11.6	
Varianza	0.91	Varianza2	3.64	
Dev.Stand.	0.954	Dev.Stand2	1.908	R

a. Se moltiplico per 2 tutti dati,

la varianza σ² è moltiplicata per 4

$$1,908 = 0,954 \times 2$$

la deviazione standard σ è moltiplicata per 2

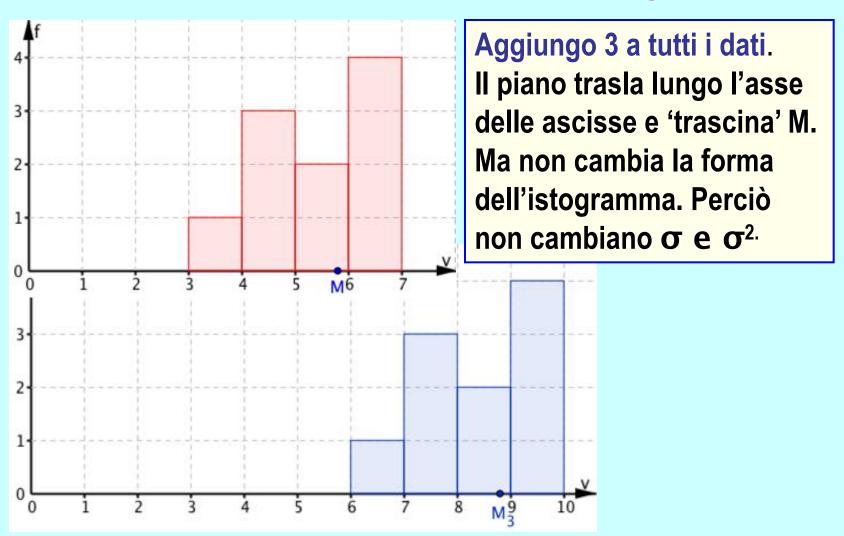
E. Proprietà di varianza e deviazione standard

Quesito 6

RAGAZZE	RAGAZZE	RAGAZZE+3	RAGAZZE+3
4		7	
5		8	
5		8	
5		8	
6		9	
6		9	
6.5		9.5	
6.5		9.5	
7		10	
7		10	
Media	5.8	Media3	8.8
Varianza	0.91	Varianza3	0.91
Dev.Stand.	0.954	Dev.Stand3	0.954

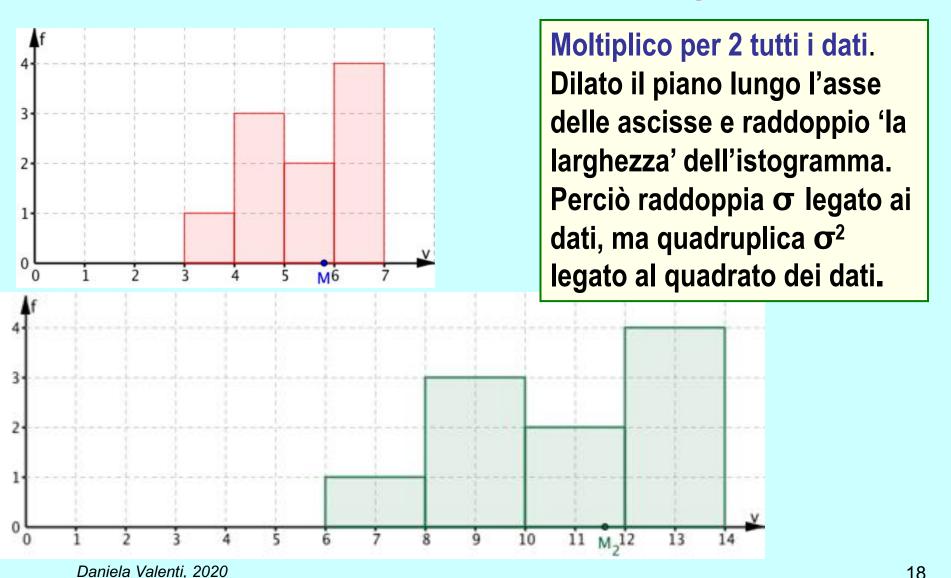
b. Se aggiungo 3 a tutti dati, la varianza σ^2 e la deviazione standard σ non cambiano

Proprietà di varianza e deviazione standard: un'interpretazione grafica



17

Proprietà di varianza e deviazione standard: un'interpretazione grafica



F. Proprietà di varianza e deviazione standard: validità generale

Quesito 7

Indico con a, b, c tre dati, con M la loro media, con σ^2 la loro varianza e con σ la loro deviazione standard. Risulta:

$$M = \frac{a+b+c}{3} \qquad \sigma^2 = \frac{(a-M)^2 + (b-M)^2 + (a-M)^2}{3} \qquad \sigma = \sqrt{\sigma^2}$$

a. Se moltiplico per k tutti dati, ottengo:

$$M_1 = \frac{ka + kb + kc}{3} = kM$$

$$\sigma_1^2 = \frac{(ka - kM)^2 + (kb - kM)^2 + (kc - kM)^2}{3} = \frac{k^2 \left[(a - M)^2 + (b - M)^2 + (c - M)^2 \right]}{3} = k^2 \sigma^2$$

$$\sigma_1 = \sqrt{{\sigma_1}^2} = k\sigma$$

Se moltiplico per k tutti i dati, anche la media M e la deviazione standard σ sono moltiplicate per k; invece la varianza σ^2 è moltiplicata per k^2 .

F. Proprietà di varianza e deviazione standard: validità generale

Quesito 7

Indico con a, b, c tre dati, con M la loro media, con σ^2 la loro varianza e con σ la loro deviazione standard. Risulta:

$$M = \frac{a+b+c}{3}$$
 $\sigma^2 = \frac{(a-M)^2 + (b-M)^2 + (a-M)^2}{3}$ $\sigma = \sqrt{\sigma^2}$

Se aggiungo h a tutti dati, ottengo:

$$M_2 = \frac{a+h+b+h+c+h}{3} = \frac{a+b+c+3h}{3} = M+h$$

$$\sigma_2^2 = \frac{\left[a + h - (M+h)\right]^2 + \left[b + h - (M+h)\right]^2 + \left[c + h - (M+h)\right]^2}{3} = \frac{\left(a - M\right)^2 + \left(b - M\right)^2 + \left(c - M\right)^2}{3} = \sigma^2$$

$$\sigma_2 = \sigma$$

Se aggiungo h a tutti i dati, anche alla media M aggiungo h; invece la varianza σ^2 e deviazione standard σ non cambiano.

G. Un procedimento alternativo per calcolare la varianza

Quesito 8

Indico con a, b, c tre dati; completa il procedimento qui sotto calcolare la varianza.

• Calcolo la media
$$M = \frac{a+b+c}{3} \Leftrightarrow 3M = a+b+c$$

Calcolo la varianza

$$\sigma^{2} = \frac{(a-M)^{2} + (b-M)^{2} + (c-M)^{2}}{3} = \frac{a^{2} + b^{2} + c^{2} - 2M(a+b+c) + 3M^{2}}{3} = \frac{a^{2} + b^{2} + c^{2} - 6M^{2} + 3M^{2}}{3}$$

Concludo che posso calcolare la varianza anche con la formula

$$\sigma^2 = \frac{a^2 + b^2 + c^2}{3} - M^2$$

Simboli per scrivere formule generali

Per avere una formula generale, adatta a calcolare varianza e deviazione standard, ho indicato 3 dati qualunque con le lettere a, b, c.

Ma così la formula non è del tutto generale: i dati sono solo 3, mentre in statistica i dati possono essere 100, 1000, ... non basterebbero tutte le lettere dell'alfabeto per indicarli.

Simboli per scrivere formule generali

Per questo si indica:

- il numero di dati con N;
- i singoli dati con $x_1, x_2,, x_N$

Attenzione a scrittura e lettura dei simboli:

Simbolo	Si legge	Significa
x^2	x alla seconda	$x^2 = x \cdot x$
x_2	x con due	Secondo dato
x^1	x alla prima	$x^1 = x$
x_1	x con uno	Primo dato
x_1^2	x con uno al quadrato	$x_1^2 = x_1 \cdot x_1$

Il simbolo di 'sommatoria'

Per calcolare, ad esempio, la media di 100 dati, prima di tutto debbo addizionare i 100 numeri ed è molto lunga da scrivere questa addizione. Per abbreviare la scrittura si usa il simbolo di 'sommatoria' Σ Due esempi.

$$x_1 + x_2 + x_3 + x_4 = \sum_{i=1}^{i=4} x_i$$

$$a_1 + a_2 + a_3 + a_4 + a_5 = \sum_{k=1}^{K-5} a_k$$

24

Formule statistiche generali

Con questi simboli puoi scrivere formule generali per calcolare gli indici statistici che hai studiato finora.

Media, varianza e deviazione standard

I dati sono elencati uno di seguito all'altro

Indico N dati con i simboli $x_1, x_2, ..., x_N$

- La *media M* è data da:

$$M = \frac{x_1 + x_2 + \dots + x_N}{N} = \sum_{k=1}^{k=N} \frac{x_k}{N}$$

- La varianza o² è data da:

$$\sigma^{2} = \frac{(x_{1} - M)^{2} + (x_{2} - M)^{2} + \dots + (x_{N} - M)^{2}}{N} = \sum_{k=1}^{k=N} \frac{(x_{k} - M)^{2}}{N}$$

oppure

$$\sigma^2 = \frac{x_1^2 + x_2^2 + \dots + x_N^2}{N} - M^2 = \sum_{k=1}^{k=N} \frac{x_k^2}{N} - M^2$$

- La *deviazione standard* o è data da:

$$\sigma = \sqrt{\sigma^2}$$

Media, varianza e deviazione standard

I dati sono raccolti in una tabella di frequenza.

ESEMPIO

Voto	5	6	7	Totale	Media
Frequenza	3	4	3	10	6

IN GENERALE

Dato	x_1	 x_{p}	Totale	Media
f	f_1	 $f_{\rm p}$	N	M

- La *media* 6 è data da:

$$M = \frac{5 \times 3 + 6 \times 4 + 7 \times 3}{10} = 6$$

La varianza o² è data da:

$$\sigma^2 = \frac{(5-6)^2 \times 3 + (6-6)^2 \times 4 + (7-6)^2 \times 3}{10} = 0,6$$

oppure

$$\sigma^2 = \frac{5^2 \times 3 + 6^2 \times 4 + 7^2 \times 3}{10} - 6^2$$

- La *deviazione standard* 👨 è data da:

$$\sigma = \sqrt{\sigma^2}$$

- La media M è data da:

$$M = \frac{x_1 \cdot f_1 + \dots + x_p \cdot f_p}{N} = \sum_{k=1}^{k=p} \frac{x_k \cdot f_k}{N}$$

- La varianza o² è data da:

$$\sigma^{2} = \frac{(x_{1} - M)^{2} \cdot f_{1} + \dots + (x_{p} - M)^{2} \cdot f_{p}}{N} = \sum_{k=1}^{k=p} \frac{(x_{k} - M)^{2}}{N}$$

oppure

$$\sigma^{2} = \frac{x_{1}^{2} \cdot f_{1} + \dots + x_{p}^{2} \cdot f_{p}}{N} - M^{2} = \sum_{k=1}^{k=p} \frac{x_{k}^{2} \cdot f_{k}}{N} - M^{2}$$

- La deviazione standard o è data da:

$$\sigma = \sqrt{\sigma^2}$$