Dominio di una funzione. Esercizi

Funzioni algebriche del tipo $y = \frac{N}{R}$

Debbo escludere dal dominio tutti i numeri reali per cui D = 0.

Esercizio guidato

Completa il procedimento per determinare il dominio della funzione data nell'esercizio 1.

1.
$$y = \frac{x^2+2}{2x-4}$$

Denominatore 0 per

il dominio è R, escluso ...

Determina il dominio di ogni funzione data negli esercizi da 2 a 6.

2.
$$y = \frac{3}{x}$$

$$y = \frac{2}{3x} \qquad \qquad y = \frac{5}{2x}$$

$$y = \frac{5}{2x}$$

3.
$$y = \frac{2}{x-1}$$
 $y = \frac{3}{x+2}$ $y = \frac{7}{4-x}$

$$y = \frac{3}{x+2}$$

$$y = \frac{7}{4-x}$$

4.
$$y = \frac{2}{4x-2}$$
 $y = \frac{4}{3-2x}$ $y = \frac{1}{2x+6}$

$$y = \frac{4}{3 - 2x}$$

$$y = \frac{1}{2x + 6}$$

5.
$$y = \frac{x+1}{8-4x}$$
 $y = \frac{3x-2}{2x+3}$ $y = \frac{2x}{3x-6}$

$$y = \frac{3x-2}{2x+3}$$

$$y = \frac{2x}{3x - 6}$$

6.
$$y = \frac{x^2 + x}{3 - 2x}$$
 $y = \frac{4x^2 + 3}{2x - 1}$ $y = \frac{4x^2 - 1}{6x - 3}$

$$y = \frac{4x^2 + 3}{2x - 1}$$

$$y = \frac{4x^2 - 1}{6x - 3}$$

Esercizio guidato

Completa il procedimento per determinare il dominio della funzione assegnata nell'esercizio 7.

7.
$$y = \frac{x^2+2}{x^2-2x-3}$$

Denominatore = 0 equazione di 2^0 grado completa.

Calcolo
$$\Delta = (-2)^2 - \cdots = \cdots \quad e \text{ quindi } x = \frac{2 \pm \sqrt{\Delta}}{2} = \cdots$$

Risulta Denominatore = 0 per $x = \dots e$ $x = \dots$

Il dominio è R esclusi

Determina il dominio di ogni funzione data negli esercizi da 8 a 12.

$$8. \quad y = \frac{x^3 + 2x}{x^2 + 2x - 3}$$

$$y = \frac{x^4 - 1}{2x^2 - 3x + 1}$$

$$9. \ \ y = \frac{x^3}{4x^2 - 4x + 1}$$

$$y = \frac{2x^2 - 3}{x^2 + 2x + 1}$$

$$10. y = \frac{2x+5}{2x^2+3x-2}$$

$$y = \frac{x+2}{3x^2 + 8x - 3}$$

11.
$$y = \frac{x^3}{x^2 - 1}$$

$$y = \frac{x^3 - 1}{x^2 + x}$$

12.
$$y = \frac{2x^3 + 3x^2}{x^2 - 4}$$

$$y = \frac{x^3 + 1}{2x^2 - x}$$

1

Esercizio guidato

Completa il procedimento per determinare il dominio della funzione assegnata nell'esercizio 13.

$$13.y = \frac{x^3 + 2}{4x^3 - x}$$

Procedimento per risolvere l'equazione:

- scompongo il polinomio in fattori al massimo di 2º grado $4x^3 - x = \cdots (4x^2 - 1)$
- ricordo che un prodotto vale zero se almeno uno dei fattori vale 0

$$...(4x^2 - 1) = 0 \Longrightarrow \begin{cases} = 0 \\ 4x^2 - 1 = 0 \Longrightarrow x^2 = \cdots \Longrightarrow x = \cdots \end{cases}$$
Risulta Denominatore = 0 per $x =$, $x =$ oppure $x =$

Il dominio è R esclusi, e

Determina il dominio di ogni funzione data negli esercizi da 14 a 17.

14.
$$y = \frac{3x}{x^3 - 4x}$$
 $y = \frac{2x + 3}{x^3 + 3x^2}$

15.
$$y = \frac{x^2 + 3x}{x^4 - 1}$$
 $y = \frac{x}{x^3 - 1}$

16.
$$y = \frac{2x^2}{x^4 - 2x^2 + 1}$$
 $y = \frac{x^3 + 8}{x^4 - 5x^2 + 4}$

17.
$$y = \frac{x^2 + 3x}{x^4 - 8x^2 + 16}$$
 $y = \frac{x^3 + 8x^2 - 3}{x^3 - 5x^2 + 4x}$

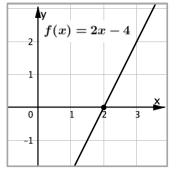
Esercizio guidato

Completa il procedimento per spiegare perché le funzioni assegnate nell'esercizio 18 hanno come dominio l'insieme R dei numeri reali

18. a.
$$y = \frac{2x^3 + 4x^2 - 3x}{12}$$
 b. $y = \frac{x^2 - 3x}{x^2 - 5x + 7}$

- a. Il denominatore è un numero che non può diventare 0. Per ogni numero reale x la formula dà la corrispondente y.
- Denominatore= 0 equazione $di2^0$ grado $\Delta = 5^2 - \dots = \dots < 0$, perciò l'equazione non ha

Non ci sono numeri reali da escludere dal dominio.


Spiega perché il dominio di ogni funzione data negli esercizi da 19 a 21 è l'insieme R dei numeri reali.

19.
$$y = \frac{x^2 + 3x}{x^2 - x + 5}$$
 $y = \frac{x^4 + 2x^2 - 3x + 5}{20}$
20. $y = \frac{4x^2}{x^2 + 5}$ $y = \frac{x^4 + 2x^2}{9}$

21.
$$y = \frac{4x^2 + 3x + 1}{5}$$
 $y = \frac{x^4 + 2x^2}{x^4 + 1}$

22. Scrivi due quozienti di polinomi che hanno come dominio l'insieme dei numeri reali escluso 0.

- 23. Scrivi due quozienti di polinomi che hanno come dominio l'insieme dei numeri reali esclusi 0 e 2.
- **24.** Scrivi due quozienti di polinomi che hanno come dominio l'insieme dei numeri reali.

Funzioni del tipo $y = \sqrt{f(x)}$

Il dominio è formato da tutti i numeri reali per cui risulta $f(x) \ge 0$.

Esercizio guidato

Completa il procedimento per determinare il dominio di ogni funzione data nell'esercizio 25.

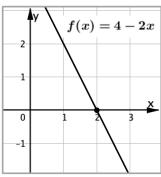
25. a.
$$y = \sqrt{2x - 4}$$

b.
$$y = \sqrt{4 - 2x}$$

a. Studio il segno di
$$f(x) = 2x - 4$$

$$2x - 4 = 0 \text{ per } x = \dots$$

$$2x - 4 > 0$$
 per $x > \dots$


Il dominio è l'insieme dei numeri reali x, tali che $x \ge ...$

b. Studio il segno di f(x) = 4 - 2x

$$2x - 4 = 0$$
 per $x = \dots$

$$2x - 4 > 0$$
 per $x < \dots$

Il dominio è l'insieme dei numeri reali x, tali che $x \leq \dots$

Determina il dominio di ogni funzione data negli esercizi da 26 a 30.

26.
$$y = \sqrt{x}$$

$$y = \sqrt{2x}$$

$$y = \sqrt{-2x}$$

27.
$$y = \sqrt{x - 1}$$
 $y = \sqrt{1 - x}$ $y = \sqrt{1 + x}$
28. $y = \sqrt{3 - 2x}$ $y = \sqrt{2x - 3}$ $y = \sqrt{3x + 6}$

$$y = \sqrt{1 - x}$$

$$y = \sqrt{1 + x}$$

28.
$$y = \sqrt{3 - 2x}$$

$$y = \sqrt{2x - 3}$$

$$y = \sqrt{3x + 6}$$

29.
$$y = \sqrt{2x - 1}$$

$$y = \sqrt{1 - 2x}$$

$$y = \sqrt{1 + 2x}$$

29.
$$y = \sqrt{3} + 2x$$
 $y = \sqrt{2} + 3$ $y = \sqrt{3} + 6$
29. $y = \sqrt{2} + 2$ $y = \sqrt{1 - 2} + 2x$ $y = \sqrt{1 + 2} + 2x$
30. $y = \sqrt{\frac{1}{2}}x + 2$ $y = \sqrt{2 - \frac{1}{2}}x$ $y = \sqrt{\frac{1}{2}}x - 2$

$$y = \sqrt{2 - \frac{1}{2}x}$$

$$y = \sqrt{\frac{1}{2}x - 2}$$

Esercizio guidato

Completa il procedimento per determinare il dominio di ogni funzione data nell'esercizio 31.

31. a.
$$y = \sqrt{x^2 - 1}$$

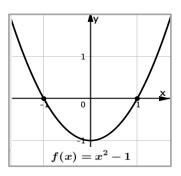
b.
$$y = \sqrt{1 - x^2}$$

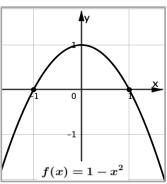
a. Studio il segno di
$$f(x) = x^2 - 1$$

$$x^2 - 1 = 0$$
 per $x =$ oppure $x = ...$

$$x^2 - 1 > 0$$
 per $x < ...$ oppure $x > ...$

Il dominio è l'insieme dei numeri reali x, tali che


$$x \leq \dots \qquad oppure \quad x \geq \dots$$


b. Studio il segno di
$$f(x) = 1 - x^2$$

$$1 - x^2 = 0$$
 per $x = ...$ oppure $x = ...$

$$1 - x^2 > 0$$
 per < $x < ...$

Il dominio è l'insieme dei numeri reali x, tali che≤*x* ≤

Determina il dominio di ogni funzione data negli esercizi da 32 a 39.

32.
$$y = \sqrt{x^2 - 4}$$
 $y = \sqrt{4 - x^2}$

33.
$$y = \sqrt{4x^2 - 1}$$
 $y = \sqrt{1 - 4x^2}$

34.
$$y = \sqrt{4x^2 - 3}$$
 $y = \sqrt{3 - 4x^2}$

35.
$$y = \sqrt{x - 4x^2}$$
 $y = \sqrt{4x^2 - x}$

36.
$$y = \sqrt{x^2 + 3x}$$
 $y = \sqrt{-x^2 - 3x}$

37.
$$y = \sqrt{-x^2 + 2x + 3}$$
 $y = \sqrt{x^2 - 2x - 3}$

38.
$$y = \sqrt{-2x^2 + 3x - 1}$$
 $y = \sqrt{2x^2 - 3x + 1}$

39.
$$y = \sqrt{3x^2 + 8x - 3}$$
 $y = \sqrt{-3x^2 - 8x + 3}$

Esercizio guidato

Completa il procedimento per spiegare perché le funzioni assegnate nell'esercizio 40 hanno come dominio l'insieme R dei numeri reali

40. a.
$$y = \sqrt{x^2 - 2x + 1}$$
 b. $y = \sqrt{x^2 + 1}$ c. $y = \sqrt[3]{x^2 - 1}$

b.
$$y = \sqrt{x^2 + 1}$$

c.
$$y = \sqrt[3]{x^2 - 1}$$

a.
$$f(x) = x^2 - 2x + 1 = (x - 1)^2 \ge 0$$
 per qualunque numero reale x.

b.
$$f(x) = x^2 + 1 > 0$$
 per qualunque numero reale x.

c. Perché trovo la radice cubica di qualunque numero reale x, anche negativo.

Spiega perché il dominio di ogni funzione data negli esercizi da 41 a 45 è l'insieme R dei numeri reali.

41.
$$y = \sqrt{x^2 + 4}$$

$$y = \sqrt{4x^2}$$

$$y = \sqrt[3]{-5x^2}$$

41.
$$y = \sqrt{x^2 + 4}$$
 $y = \sqrt{4x^2}$
42. $y = \sqrt{4x^2 - 4x + 1}$ $y = \sqrt[3]{x^2 - 4}$

$$y = \sqrt[3]{x^2 - 4}$$

$$y = \sqrt{4x^2 + 1}$$

43.
$$y = \sqrt[3]{1 - 4x^2}$$

$$y = \sqrt{4x^2 + x + 1}$$

43.
$$y = \sqrt[3]{1 - 4x^2}$$
 $y = \sqrt{4x^2 + x + 1}$ $y = \sqrt{x^2 + 2x + 1}$

44.
$$y = \sqrt{x^2 - 6x + 9}$$
 $y = \sqrt{x^2 - x + 3}$ $y = \sqrt[3]{-x^2 + 3x}$

$$y = \sqrt{x^2 - x + 3}$$

$$y = \sqrt[3]{-x^2 + 3x}$$

45.
$$y = \sqrt{2x^2 - 3x + 5}$$

45.
$$y = \sqrt{2x^2 - 3x + 5}$$
 $y = \sqrt[3]{x^2 - 3x + 2}$ $y = \sqrt{x^2 - 5x + 25}$

$$y = \sqrt{x^2 - 5x + 25}$$

Funzioni del tipo $y = \sqrt{f(x)}$ e del tipo $y = \frac{N}{R}$

Esercizio guidato

Completa il procedimento per determinare il dominio delle funzioni date nell'esercizio 46.

46. a.
$$y = \frac{x}{\sqrt{x-1}}$$

b.
$$y = \frac{\sqrt{x-1}}{x}$$

a. Ora $\sqrt{x} - 1$ si trova al denominatore e non può diventare 0; perciò il dominio è l'insieme dei numeri reali x per risulta $\cdots > 0$.

Studio il segno di f(x) =
$$x - 1$$

$$x - 1 = 0 \text{ per } x = \dots$$

$$x - 1 > 0 \text{ per } x > \dots$$

Il dominio è l'insieme dei numeri reali x, tali che x > ...

b. Ora trovo il denominatore x, che non può diventare 0 e il numeratore $\sqrt{x-1}$ che ha valore reale solo se ≥ 0 e cioè $x \geq$

Il dominio è l'insieme dei numeri reali x per cui risulta $x \ge \dots$ e $x \ne \dots$

Determina il dominio di ogni funzione data negli esercizi da 47 a 50.

47.
$$y = \frac{x+1}{\sqrt{2x}}$$

$$y = \frac{3x}{\sqrt{x+1}}$$

48.
$$y = \frac{2x+1}{\sqrt{x-4}}$$

$$y = \frac{\sqrt{4-x}}{x-3}$$

49.
$$y = \frac{x}{\sqrt{1-x^2}}$$

$$y = \frac{\sqrt{x^2 - 1}}{x}$$

50.
$$y = \frac{2x-1}{\sqrt{x-x^2}}$$

$$y = \frac{\sqrt{x^2 - x}}{2x - 1}$$

Funzioni composte con la funzione logaritmo

Per le funzioni del tipo y = ln[f(x)]

Il dominio è formato da tutti i numeri reali per cui risulta f(x) > 0.

Esercizio guidato

Completa il procedimento per determinare il dominio di ogni funzione data nell'esercizio 51.

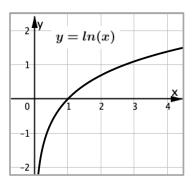
51. a.
$$y = ln(2x - 4)$$

b.
$$y = ln(4 - 2x)$$

a. Studio il segno di
$$f(x) = 2x - 4$$

$$2x - 4 = 0 \text{ per } x = \dots$$

$$2x - 4 > 0$$
 per $x > \dots$


Il dominio è l'insieme dei numeri reali x, tali che x > ...

b. Studio il segno di
$$f(x) = 4 - 2x$$

$$2x - 4 = 0$$
 per $x = \dots$

$$2x - 4 > 0$$
 per $x < \dots$

Il dominio è l'insieme dei numeri reali x, tali che $x < \dots$

5

Determina il dominio di ogni funzione data negli esercizi da 52 a 55.

52.
$$y = \ln(2x)$$

$$y = \ln(-2x)$$

53.
$$y = \ln(1 - x)$$

$$y = \ln (x - 1)$$

54.
$$y = \ln(2x - 1)$$

$$y = \ln(1 - 2x)$$

55.
$$y = \ln(3 - 2x)$$

$$y = \ln(2x - 3)$$

Esercizi riassuntivi sul dominio di una funzione

Determina il dominio di ogni funzione data negli esercizi da 56 a 62.

56.
$$y = 3 + \sqrt{2x}$$

$$y = \sqrt{3 + 2x}$$

57.
$$y = x^2 - \sqrt{2x}$$

$$y = \sqrt{x^2 - 2x}$$

58.
$$y = \frac{\ln(x)}{x-2}$$

$$y = \frac{x-2}{\ln{(x)}}$$

59.
$$v = ln(x^2)$$

$$y = ln(x^3)$$

60.
$$y = ln\sqrt{x}$$

$$y = \sqrt{\ln(x)}$$

61.
$$y = ln(1 + x)$$

$$y = 1 + ln(x)$$

Scegli la risposta corretta ai quesiti dati negli esercizi da 62 a 70.

- **62.** Il dominio della funzione $y = \frac{2x-1}{x+4}$ è:
 - A. L'insieme Ro
 - C. L'insieme dei numeri reali escluso 0
- **63.** Il dominio della funzione $y = \frac{x+2}{x^2+2x+1}$ è:
 - A. L'insieme dei numeri reali escluso -2
 - C. L'insieme dei numeri reali escluso -2
- **64.** Il dominio della funzione $y = \frac{2x-8}{x^2+9}$ è:
 - A. L'insieme dei numeri reali escluso 3
 - C. L'insieme dei numeri reali

B. L'insieme dei numeri reali escluso 4

D. L'insieme dei numeri reali escluso –4

- **B.** L'insieme dei numeri reali escluso –1 **D.** L'insieme dei numeri reali esclusi 1 e -1
- **B.** L'insieme dei numeri reali escluso 4
- **D.** L'insieme dei numeri reali esclusi 3 e −3
- 65. Quale fra le seguenti funzioni NON ha come dominio l'insieme R dei numeri reali?

$$A. y = \frac{2x^2 + 3x}{x^2 - 4x + 4}$$

$$\mathbf{B.} \ y = 2x^4 - 3x^3 + 5x - 6$$

D.
$$y = \frac{4x^2-4x}{3x^2+5}$$

C.
$$y = \frac{3x+6}{x^2-x+5}$$

- **66.** Il dominio della funzione $y = \sqrt{x+4}$ è:
 - **A.** L'insieme dei numeri reali x < -4
- **B.** L'insieme dei numeri reali x > -4
- C. L'insieme dei numeri reali escluso –4
- **D.** L'insieme dei numeri reali $x \ge 4$
- 67. Quale fra le seguenti funzioni NON ha come dominio l'insieme R dei numeri reali?

A.
$$y = \frac{3x+2}{\sqrt{4x^2-4x+1}}$$

B.
$$y = \sqrt{4x^2 - 4x + 1}$$

C.
$$y = \sqrt{4x^2 + 9}$$

D.
$$y = \frac{\sqrt{4x^2 - 4x + 1}}{4x^2 + 9}$$

- **68.** Il dominio della funzione $y = \frac{3x-2}{\sqrt{x+4}}$ è:
 - **A.** L'insieme dei numeri reali $x \ge -4$
- **B.** L'insieme dei numeri reali x < -4
- C. L'insieme dei numeri reali escluso -4 D. L'insieme dei numeri reali x > -4
- 69. Quale fra le seguenti funzioni ha come dominio l'insieme dei numeri reali escluso 0?

$$\mathbf{A.} \ y = ln\sqrt[3]{x}$$

B.
$$y = ln(x^2 + 6x + 9)$$

$$\mathbf{C.}\ y = ln(x^4)$$

D.
$$y = ln(x^3)$$

- **70.** Il dominio della funzione $y = \frac{x-3}{\ln(x)}$ è:
 - **A.** L'insieme dei numeri reali $x \ge 0$
- **B.** L'insieme dei numeri reali x > 0
- C. L'insieme dei numeri reali x > 0, escluso 1 D. L'insieme dei numeri reali escluso 3