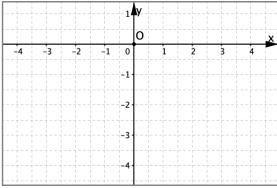

Polinomi di 2º grado e parabole. Esercizi

I. Grafico di funzioni del tipo $y = ax^2$

Esercizio guidato

Completa procedimento e figura a fianco per tracciare il grafico della funzione assegnata nell'esercizio 1.



Vertice V =

Asse di simmetria

Tabella per trovare due punti A e B ...

...

$$y = -\frac{1}{4}x^2$$

Disegno l'arco OAB.....

Disegno l'arco OA'B'.....

Traccia il grafico delle funzioni assegnate negli esercizi da 2 a 6

2.
$$y = x^2$$

$$y = 2x^2$$

$$y = -2x^2$$

3.
$$y = -x^2$$

$$y = -\frac{1}{2}x^2$$

$$y = \frac{1}{2}x^2$$

4.
$$y = x^2$$

$$y = \frac{3}{2}x^2$$

$$y = \frac{2}{3}x^2$$

5.
$$y = -x^2$$

$$y = -\frac{5}{4}x^2$$

$$y = -\frac{4}{5}x^2$$

6.
$$y = x^2$$

$$y = \frac{3}{4}x^2$$

$$y = -\frac{4}{3}x^2$$

II. Grafico di funzioni del tipo $y = ax^2 + bx + c$

Esercizio guidato

Quali fra le equazioni assegnate nell'esercizio 7 hanno per grafico una parabola con l'asse di simmetria parallelo all'asse y? Completa il procedimento per rispondere e motivare la risposta

7. **a**.
$$y = -x^3 + 4x$$

b.
$$y = -x^2 + 4x$$

7. **a**.
$$y = -x^3 + 4x$$
 b. $y = -x^2 + 4x$ **c**. $x = -y^2 + 4y$ **d**. $y = \frac{4}{3x^2}$

d.
$$y = \frac{4}{3x^2}$$

- **a.** NO perché $-x^3 + 4x$ non è un polinomio di
- **b.** SI perché $-x^2 + 4x$ è un polinomio di
- **c.** NO perché $x = -y^2 + 4y$ non è una funzione del tipo
- **d.** NO perché $\frac{4}{3x^2}$ non è

Quali fra le equazioni assegnate negli esercizi 8 e 9 hanno per grafico una parabola con l'asse di simmetria parallelo all'asse y? Motiva la tua risposta

8.
$$xy = -2x^2 + 3$$
 b. $y^2 = -2x^2 + 3$ **c.** $y = -2x^2 + 3$ **d.** $y = -2x + 3$

b.
$$y^2 = -2x^2 + 3$$

$$\mathbf{c}. y = -2x^2 + 3$$

$$\mathbf{d}. v = -2x + 3$$

9.
$$y = \frac{3}{2}x + 6$$

$$\mathbf{b}.\,y = \frac{3}{2}x^2 + 6x$$

9.
$$y = \frac{3}{2}x + 6$$
 b. $y = \frac{3}{2}x^2 + 6x$ **c.** $y = \frac{3}{2}x^4 + 6x^2$ **d.** $x = \frac{3}{2}y^2 + 6y$

$$\mathbf{d.} \, x = \frac{3}{2} y^2 + 6y$$

1

Esercizio guidato

Completa procedimento e figura qui sotto per tracciare il grafico della funzione assegnata nell'esercizio 10.

10.
$$y = -x^2 + 4x$$

Equazione del tipo $y = ax^2 + bx + c$ con $b = -2ap$	$y = -x^2 + 4x$			
1. Vertice V e asse di simmetria s	Coordinate p e q del vertice V : $\begin{cases} p = -\frac{b}{2a} & \Rightarrow \\ q = ap^2 + bp + c & q = \dots \\ V(\dots, \dots) \end{cases}$ Equazione dell'asse di simmetria s : Disegno vertice V e asse di simmetria s .			
2. Tabella per trovare due punti A e B a sinistra del vertice V.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
x y 3. Disegno l'arco VAB. 4. Disegno l'arco VA'B' simmetrico di VAB rispetto all'asse di simmetria s.	-1 0 1 2 3 4 5 X			

Esamina le funzioni assegnate negli esercizi da 11 a 16 e risolvi i seguenti quesiti:

- a. Riconosci quali funzioni hanno per grafico una parabola con asse di simmetria parallelo all'asse delle y.
- **b.** Determina il vertice V e l'asse di simmetria s di ogni parabola.
- c. Traccia il grafico di ogni parabola.

11.
$$y=x^2-2$$

$$y = -x^2 + 2$$

$$y = -x^2 - 2$$

$$y=x-2$$

12.
$$y=x^2-2$$

$$y=x^2-2x$$
 $y=-x^2+2x$ $y^2=-x^2-2$ $y=-x^2-2x$

$$y^2 = -x^2 - 2$$

$$y = -x^2 - 2x$$

13.
$$y=x^2+4x+4$$
 $y=-4x^3+4x-1$

$$y = -4x^3 + 4x - 1$$

$$y = -4x^2 + 4x - 1$$

$$y = -4x^2 + 4x - 1$$
 $y = -x^2 + 6x - 9$

14.
$$y=x^2-4x+3$$
 $xy=x^2+3x-2$ $y=-4x^2+8x-3$ $y=-x^2+6x-7$

$$xy = x^2 + 3x - 2$$

$$y = -4x^2 + 8x - 3$$

$$v = -x^2 + 6x - 7$$

15.
$$y = -\frac{1}{4}x^2 + x - 2$$
 $y = \frac{1}{2}x^2 + x - 1$ $y = \frac{1}{2}x - 1$ $y = \frac{1}{2}x^2 + x - \frac{3}{2}$

$$y = \frac{1}{2}x^2 + x - 1$$

$$y = \frac{1}{2}x - 1$$

$$y = \frac{1}{2}x^2 + x - \frac{3}{2}$$

16.
$$y = -\frac{3}{2}x^2 + 3x - 2$$

$$y=3x^2-\frac{3}{2}x+1$$

$$y=3x^2-\frac{3}{2x}+1$$

$$y = -\frac{3}{2}x^2 + 3x - 2$$
 $y = 3x^2 - \frac{3}{2}x + 1$ $y = 3x^2 - \frac{3}{2}x + 1$ $y = \frac{3}{2}x^2 + 3x - \frac{3}{2}$

2

III. Grafico di funzioni del tipo $y = a(x - p)^2 + q$

Esercizio guidato

Completa procedimento e figura qui sotto per tracciare il grafico della funzione assegnata nell'esercizio 17.

17.
$$y = \frac{1}{2}(x+2)^2 - 3$$

Equazione del tipo $y = a(x - p)^2 + q$	$y = \frac{1}{2}(x+2)^2 - 3$ Coordinate p e q del $vertice V: \begin{cases} -p = \dots \\ +q = \dots \end{cases} \Rightarrow \begin{cases} p = \dots \\ q = \dots \end{cases} V(\dots, \dots) Equazione dell'asse di simmetria s: \dots Disegno vertice V e asse di simmetria s.$		
1. Vertice V e asse di simmetria s			
2. Tabella per trovare due punti A e B a destra del vertice V.	2 A y		
x y 3. Disegno l'arco VAB. 4. Disegno l'arco VA'B' simmetrico di VAB rispetto all'asse di simmetria s.	-5 -4 -3 -2 -1 0 1 -1 -2 -2 -3 -3 -3 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3		

Esamina le funzioni assegnate negli esercizi da 18 a 23 e risolvi i seguenti quesiti:

- **a.** Determina il vertice V e l'asse di simmetria s di ogni parabola.
- **b.** Traccia il grafico di ogni parabola.

18.
$$y = x^2 - 1$$

$$y = (x - 1)^2$$

$$y = (x - 1)^2 + 2$$

19.
$$y = -x^2 - 1$$

$$y = -(x+1)^2$$

$$y = -(x - 1)^2 + 3$$

20.
$$y = 4x^2 + 3$$

$$y = 4(x+3)^2$$

$$y = 4(x+3)^2 + 1$$

21.
$$y = -4x^2 + \frac{1}{2}$$

$$y = -4\left(x + \frac{1}{2}\right)^2$$

$$y = (x - 1)^{2}$$

$$y = (x - 1)^{2} + 2$$

$$y = -(x + 1)^{2}$$

$$y = -(x - 1)^{2} + 3$$

$$y = 4(x + 3)^{2}$$

$$y = 4(x + 3)^{2} + 1$$

$$y = -4\left(x + \frac{1}{2}\right)^{2}$$

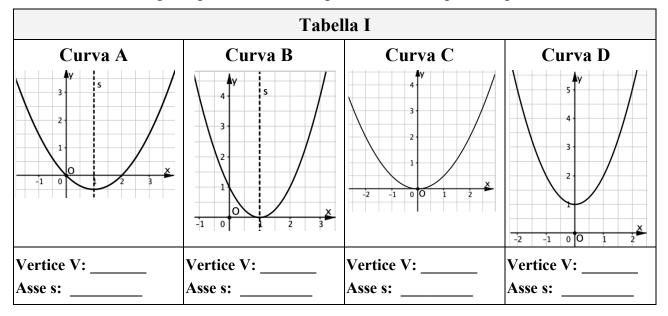
$$y = -4\left(x + \frac{1}{2}\right)^{2} + 3$$

22.
$$y = \frac{1}{4}x^2 - 2$$

$$y = \frac{1}{4}(x - 2)^2$$

$$y = \frac{1}{4}(x-2)^2$$
 $y = \frac{1}{4}(x-2)^2 - 1$

$$23. y = -\frac{1}{4}x^2 + 1$$


$$y = -\frac{1}{4}(x+1)^2$$

$$y = -\frac{1}{4}(x+1)^2$$
 $y = -\frac{1}{4}(x+1)^2 - 2$

3

IV. Quesiti vari sul grafico di polinomi di 2º grado

- 24. Nella tabella I qui sotto trovi 4 parabole e nella tabella II trovi 6 equazioni.
 - **a.** Scrivi le coordinate del vertice **V** e l'equazione dell'asse di simmetria *s* di ogni parabola per completare la tabella **I**.
 - **b.** Associa ad ogni equazione la corrispondente curva per completare la tabella II.

Tabella II							
Equazione	$y = (x-1)^2$	$y = \frac{1}{2}x^2$	$y = x^2 + 1$	$y = \frac{1}{2}(x-1)^2 - \frac{1}{2}$	$y = x^2 - 2x + 1$	$y = \frac{1}{2}x^2 - x$	
Curva							

25. Trova e correggi gli errori nelle seguenti affermazioni.

Affermazione	Errori
Nella parabola d'equazione $y = 2x^2$ il vertice $V(0, 2)$ è il punto più altoo e la concavità è rivolta verso il basso.	
Nella parabola d'equazione $y = 2x^2$ risulta $a = 2 > 1$, perciò la parabola è 'più larga' della parabola $y = x^2$.	
La parabola $y = -3x^2 + 2$ ha il vertice V(-3, 0) e la concavità rivolta verso il basso.	
La parabola $y = 2(x - 3)^2$ ha il vertice V(0, 3) e passa per il punto A(3, 0).	

26. Fra le seguenti affermazioni scegli quelle vere (V) e quelle false (F)

- **A.** Il grafico della funzione $y = 3x^2 + 5$ è una parabola **V F**
- **B.** La parabola d'equazione $y = -4 + x^2$ ha la concavità rivolta verso il basso **V F**
- C. La parabola d'equazione $y = -4x^2$ ha il vertice O(0,0) V F
- **D.** Il grafico della funzione $y = 4x^3 1$ è una parabola **V F**
- **E.** Il grafico della funzione $y = x 4^2$ ha per grafico una parabola **V F**