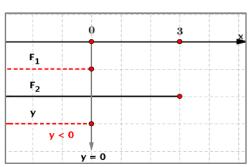
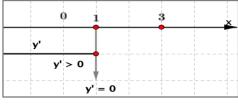
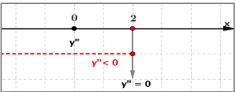
Grafico di funzioni polinomiali. Esercizi

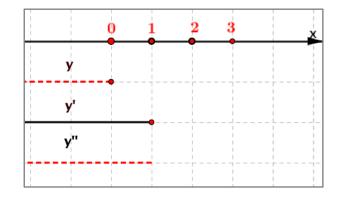
Grafici di funzioni polinomiali di 3°grado

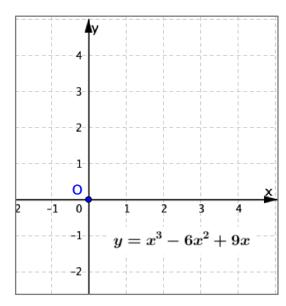

Esercizio guidato

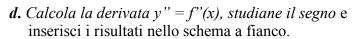

- 1. Completa il procedimento per tracciare il grafico di $y = x^3 6x^2 + 9x$
 - a. Prime caratteristiche del grafico
 - Qual è l'insieme di definizione della funzione? _____
 - La funzione è pari o dispari?
 - **b.** Studia il segno della funzione e riassumi i risultati nello schema a fianco.
 - Scrivi la funzione come prodotto di due funzioni.

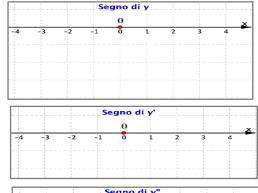

$$y =(x-3)^2$$

- Studia il segno dei fattori $F_1 = \dots$ $F_2 = (x-3)^2$
- Per ricavare il segno del prodotto y tengo presente che:
 - y = 0 se almeno un fattore è zero;
 - y < 0 solo se i fattori hanno segno discorde.
- c. Calcola la derivata y' = f'(x), studiane il segno e inserisci i risultati nello schema a fianco.

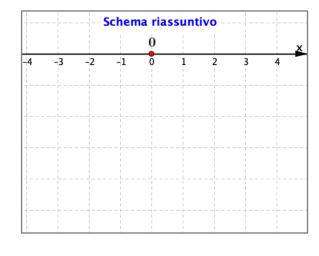

d. Calcola la derivata y'' = f''(x), studiane il segno e inserisci i risultati nello schema a fianco.

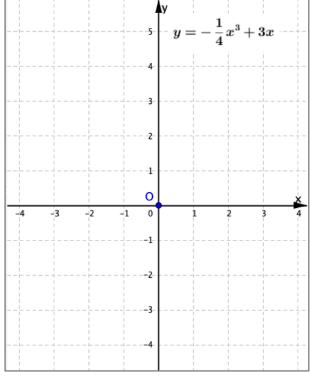



- e. Riassumi in un solo schema il segno della funzione e delle sue derivate, nella figura qui sotto, a sinistra
- **f.** Elenca i punti notevoli (intersezioni con asse x o con asse y, massimi o minimi relativi, flessi) e determinane le ordinate qui sotto. Scrivi l'elenco dei punti notevoli sotto lo schema riassuntivo del segno.
- **g.** Disegna il grafico della funzione assegnata a partire da tutte le informazioni che hai ottenuto, nel piano cartesiano qui sotto a destra



Esercizio guidato


- 2. Completa il procedimento per tracciare il grafico di $y = -\frac{1}{4}x^3 + 3x$
 - a. Prime caratteristiche del grafico
 - Qual è l'insieme di definizione della funzione?
 - La funzione è pari o dispari?
 - **b.** Studia il segno della funzione e riassumi i risultati nello schema a fianco.
 - c. Calcola la derivata y' = f'(x), studiane il segno e inserisci i risultati nello schema a fianco.



- e. Riassumi in un solo schema il segno della funzione e delle sue derivate, nella figura qui sotto, a sinistra,
- **f.** Elenca qui sotto i punti notevoli (intersezioni con asse x o con asse y, massimi o minimi relativi, flessi) e determinane le ordinate qui sotto. Scrivi l'elenco dei punti notevoli sotto lo schema riassuntivo.
- **g.** Nel piano cartesiano a destra disegna infine il grafico della funzione assegnata a partire da tutte le informazioni che hai ottenuto.

Studia il grafico delle funzioni polinomiali assegnate negli esercizi da 3 a 14.

3.
$$y=1-\frac{1}{2}x^3$$

4.
$$y = \frac{1}{8}x^3 - \frac{3}{4}x^2$$

5.
$$y = -\frac{1}{2}x^3 + 6x$$

6.
$$y = -x^3 + 3x^2$$

7.
$$y = -x^3 + 3x$$

8.
$$y=-x^3+3x^2-4$$

[Si ottiene $y=-(x-2)^2(x+1)$, $y'=3x(2-x)$, $y''=6(1-x)$]

9.
$$y = x^3 + 3x^2 + 3x + 1$$

[Si ottiene $y = (x + 1)^3$, $y' = 3(x + 1)^2$, $y'' = 6(x + 1)$]

10.
$$y = 4x^3 - 3x - 1$$

[Si ottiene $y = (x - 1)(2x + 1)^2$, ...]

11.
$$y = x^3 + 3x^2 + 4x + 2$$

[Si ottiene $y = (x + 1)(x^2 + 2x + 2)$, ...]

12.
$$y = x^3 - 3x + 2$$

[Si ottiene $y = (x - 1)^2(x + 2), ...$]

13.
$$y = \frac{1}{8}x^3 - \frac{3}{8}x^2 - 3x - \frac{5}{2}$$

[Si ottiene $y = \frac{1}{8}(x+1)(x^2 - 4x - 20), ...]$

14.
$$y = \frac{1}{8}x^3 - \frac{3}{2}x + 2$$

[Si ottiene $y = \frac{1}{8}(x+4)(x-2)^2$, ...]

- **15.** Dimostra che ha sempre un punto di massimo o minimo relativo una parabola, grafico di una funzione di 2° grado del tipo $y = ax^2 + bx + c$. [Calcola derivata e stabilisci se puoi sempre trovare nu numero reale x per cui risulta y' = 0 ...]
- **16.** Dimostra che non può avere flessi una parabola, grafico di una funzione di 2° grado del tipo $y = ax^2 + bx + c$.
- 17. Stabilisci quali casi si possono presentare per i punti stazionari del grafico di una funzione di 3° grado del tipo $y = ax^3 + bx^2 + cx + d$.
- **18.** Dimostra che tutte le curve d'equazione $y = x^3 + ax$ hanno un solo punto di flesso in O(0, 0), rispetto al quale sono simmetriche.

Grafici di funzioni polinomiali di 4ºgrado

Esercizio svolto

Studio il grafico di $y = \frac{1}{4}x^4 - 2x^2$

- 1. Prime caratteristiche del grafico
 - L'insieme **R** dei numeri reali è l'insieme di definizione della funzione
 - La funzione è pari perché trovo

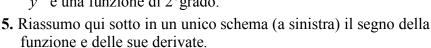
$$f(x) = \frac{1}{4}x^4 - 2x^2 \qquad f(-x) = \frac{1}{4}(-x)^4 - 2(-x)^2 = f(x)$$

- 2. Segno della funzione.
 - Scrivo la funzione come prodotto di due funzioni di 2° grado.

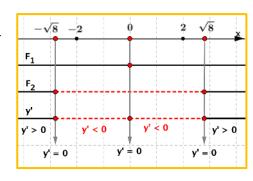
$$y = \frac{1}{4}x^2\left(x^2 - 8\right)$$

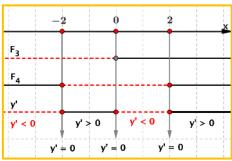
- Studio il segno dei fattori $F_1 = \frac{1}{4}x^2$ $F_2 = x^2 8$
- Per ricavare il segno del prodotto y ricordo che:
 - y = 0 se almeno un fattore è zero;
 - y < 0 solo se i due fattori hanno segno discorde.
- **3.** Segno della derivata y' = f'(x).

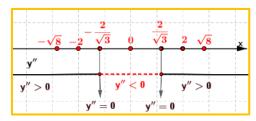
$$v' = x^3 - 4x$$

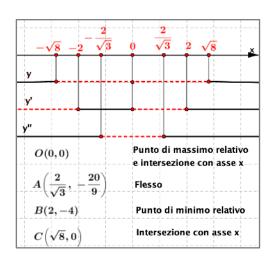

- Scrivo la derivata come prodotto di due funzioni.

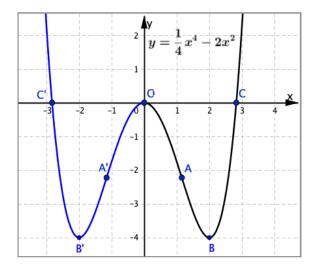
$$y' = x\left(x^2 - 4\right)$$


- Studio il segno dei fattori $F_3 = x$ $F_4 = x^2 4$
- Ricavo il segno del prodotto y'.
- **4.** Segno della derivata seconda y'' = f''(x)


$$v'' = 3x^2 - 4$$


y" è una funzione di 2°grado.




- **6.** Elenco i punti notevoli (intersezioni con asse *x* o con asse *y*, massimi o minimi relativi, flessi) e ne calcolo le ordinate.
- 7. Nel piano cartesiano a destra disegno il grafico della funzione assegnata a partire da tutte le informazioni ottenute.

 $\frac{2}{\sqrt{3}}\cong 1,1$

 $\sqrt{8}\cong 2.8$

Osservazione. La funzione è pari: A', B', C' sono i punti simmetrici di ABC rispetto all'asse delle y.

Studia il grafico delle funzioni polinomiali assegnate negli esercizi da 19 a 32.

19.
$$y = \frac{1}{4}x^4 + x^3$$

20.
$$y = 2x^4 - 4x^3$$

21.
$$y = x^4 - 4x$$

22.
$$y = x^4 - 6x^3 + 9x^2$$

23.
$$y = x^4 - 5x^2 + 4$$

[Si ottiene
$$y = (x^2 - 1)(x^2 - 4), ...$$
]

24.
$$y = \frac{1}{4}x^4 - \frac{5}{2}x^2 + \frac{9}{4}$$

[Si ottiene
$$y = \frac{1}{4}(x^2 - 1)(x^2 - 9), \dots$$
]

25.
$$y = -\frac{1}{8}x^4 + x^2 + \frac{9}{8}$$

[Si ottiene
$$y = -\frac{1}{8}(x^2 + 1)(x^2 - 9), ...$$
]

26.
$$y = \frac{1}{2}x^4 + \frac{3}{2}x^2 - 2$$

[Si ottiene
$$y = \frac{1}{2}(x^2 - 1)(x^2 + 4), ...]$$

27.
$$y = 3x^4 + 4x^3 + 1$$

[Si ottiene
$$y = (x + 1)^2(3x^2 - 2x + 1), ...$$
]

28.
$$y = 2x(x-2)^3$$

29.
$$y = 32x(x-1)^3$$

30.
$$y = 16x^3(2-3x)$$

31.
$$y = x^2(x-2)^2$$

32.
$$y = (x + 2)^2(x - 1)^2$$

Grafici di funzioni polinomiali di grado superiore al 4°

Studia il grafico delle funzioni polinomiali assegnate negli esercizi da 33 a 38

33.
$$y = x^5 - 5x$$

34.
$$y = 3x^5 - 5x^3$$

$$35. y = \frac{8}{5}x^5 - 2x^4$$

36.
$$y = (x^2 - 1)^3$$

$$37. y = \frac{1}{5}x^5 - x^3 + 2x$$

$$38. y = \frac{1}{4}x^5 - 2x^3 + 4x$$