
Potenze con esponente intero

L'elevazione a potenza

È la scrittura abbreviata di una moltiplicazione ripetuta

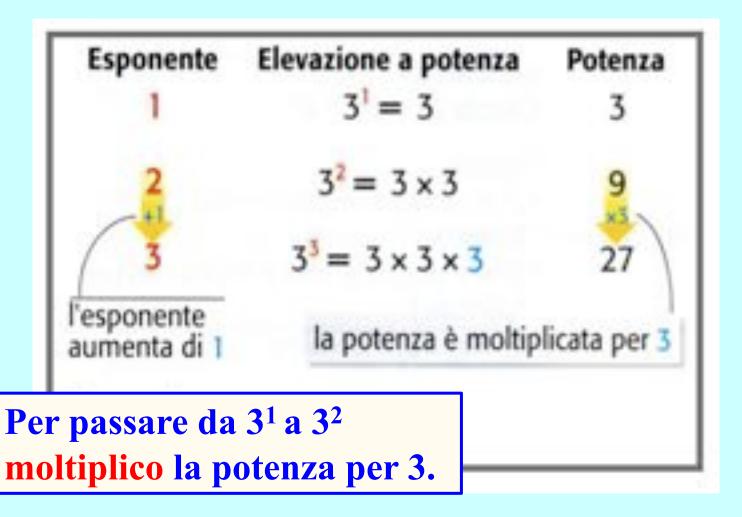
$$a^n = \underbrace{a \cdot \dots \cdot a}_{n \text{ fattori}}$$

L'elevazione a potenza. Esempi Altri esempi

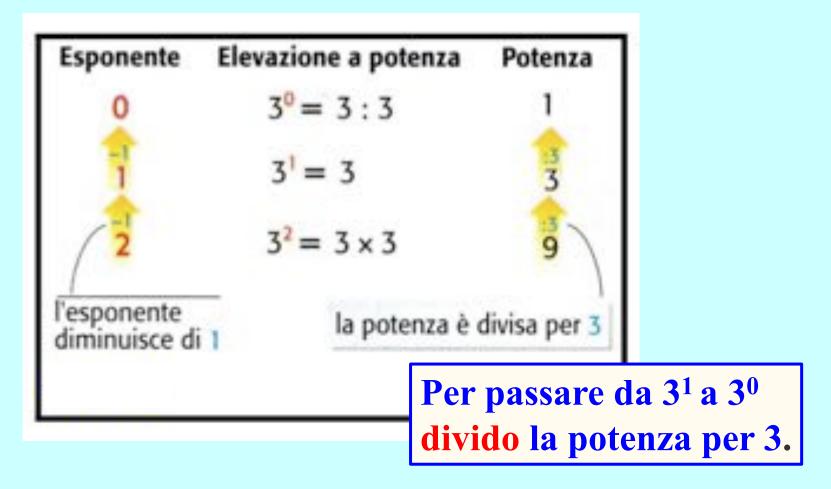
$$3^{2} = \underbrace{3 \times 3}_{2 \text{ volte}} \qquad 3^{1} = \underbrace{3}_{1 \text{ volta}}$$

E posso trovare 3°?

Ha senso moltiplicare 0 volte 3?


L'elevazione a potenza. Verso l'esponente 0

E posso trovare 3º?


Non ha senso moltiplicare 0 volte 3

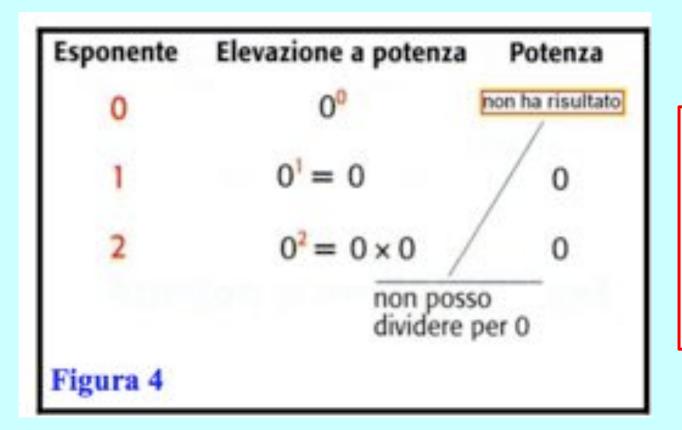
Ma in matematica posso ragionare per arrivare anche all'esponente 0

Ecco come si può ragionare

Arrivo all'esponente 0

Così trovo
$$3^0 = 1$$

Ripeto il ragionamento con altre basi. E trovo


$$3^0 = 1$$
 $5^0 = 1$ $10^0 = 1$ $0,1^0 = 1$

Ma posso scegliere 0 anche come base?

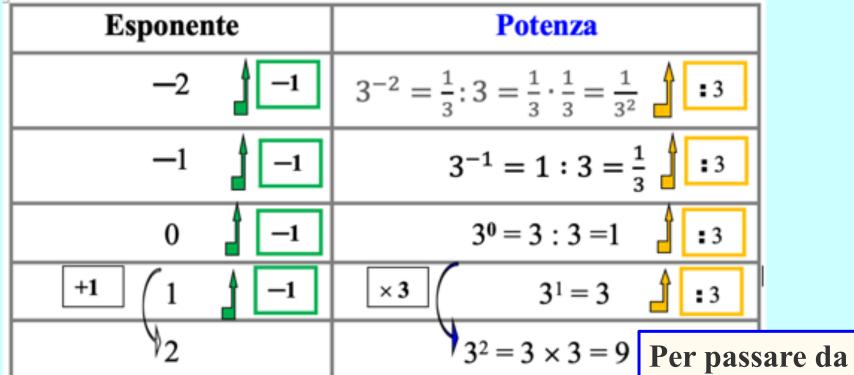
Riprendo le potenze di 0

Esponente	Elevazione a potenza	Potenza
1	$0^1 = 0$	0
2	$0^2 = 0 \times 0$	0
3	$0^3 = 0 \times 0 \times 0$	0
	$\vdots \\ 0^3 = 0$:
Figura 3		

Con base 0 il ragionamento non procede

Per passare da 0^1 a 0^0 dovrei dividere per 0 la potenza.

Ma non posso dividere per 0.


00 non ha risultato

Attività

Completa la scheda di lavoro per continuare ad esplorare le potenze.

Che cosa hai trovato

Esponente intero negativo

$$3^{-1}=\frac{1}{3^1}$$

$$\frac{3^{-2}}{3^2} = \frac{1}{3^2} \dots$$

Per passare da 3¹ a 3⁰ divido la potenza per 3.

Ripeto il ragionamento con altre basi e altri esponenti interi negativi

$$2^{-1} = \frac{1}{2^{1}} \quad 5^{-2} = \frac{1}{5^{2}} \quad 3^{-4} = \frac{1}{3^{4}} \quad 10^{-5} = \frac{1}{10^{5}}$$

Ma posso scegliere 0 come base?

NO!

 0^{-1} , 0^{-2} , 0^{-3} ... non hanno risultato

Esponente intero negativo e base 0

2. Che cosa puoi dire delle seguenti uguaglianze?

$$0^{0} = 0$$

$$0^0 = 0 \qquad 0^{-1} = 0$$

$$0^{-2} = 0$$

Sono tutte false

Potenze di 10 ad esponente intero

Esponente z	10 ^z	Scrittura decimale
3	$10^3 = 1000$	3 zeri dopo la cifra 1
1	$10^{1} = 10$	1 zero dopo la cifra 1
0	$10^{0} = 1$	Nessuno zero dopo la cifra 1
-1	$10^{-1} = \frac{1}{10} = 0, 1$	1 zero prima della la cifra 1
-3	$10^{-3} = \frac{1}{10^3} = 0,001$	3 zeri prima della la cifra 1

Potenze con esponente intero negativo

Base	Esponente	Potenza
3	-1	$\frac{1}{3}$
3	-2	$\frac{1}{3^2}$
2	-3	$\frac{1}{2^3}$

In generale, solo se l'esponente n è un numero naturale e la base $a \neq 0$

$$a^{-n} = \frac{1}{a^n}$$

0-n non ha risultato

Potenze con esponente intero negativo

- 4. Quali fra le seguenti affermazioni sono corrette? C e D
 - A. $a^{-1} = \frac{1}{a}$, se scelgo come base *a* un numero razionale.
 - **B.** $a^{-n} = \frac{1}{a^n}$, dove **a** è un numero razionale e **n** è un numero naturale escluso 0.
 - C. $a^{-1} = \frac{1}{a}$, dove a un numero razionale, escluso zero.
 - **D.** $a^{-n} = \frac{1}{a^n}$, dove a è un numero razionale escluso 0 ed n è un numero naturale.

Attenzione all'affermazione B.

Se $a \neq 0$, ad esempio a = 3, perché escludere n = 0?

Sviluppo
$$3^{-0} = \frac{1}{3^0}$$

E ottengo $3^0 = \frac{1}{1}$ ossia. $1 = \frac{1}{1}$ che è vera

Una riflessione sulle potenze con esponente intero negativo

L'esponente -1

Numero razionale a	$a^{-1}=\frac{1}{a}$	
2	$2^{-1} = \frac{1}{2}$	
-2	$(-2)^{-1} = -\frac{1}{2}$	
$\frac{1}{3}$	$\left(\frac{1}{3}\right)^{-1} = 3$	
$\frac{3}{4}$	$\left(\frac{3}{4}\right)^{-1} = \frac{4}{3}$	
$0,2=\frac{1}{5}$	$0,2^{-1} = \left(\frac{1}{5}\right)^{-1} = 5$	
0	Non esiste il reciproco di 0	

$$a \cdot \frac{1}{a} = 1$$

 $\frac{1}{a}$ è il reciproco di a

a⁻¹ può sostituire il reciproco