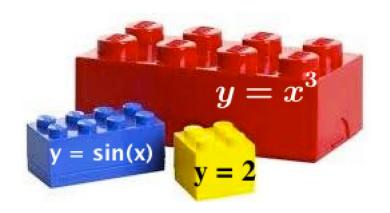

Algebra delle derivate 1


Come è organizzato il calcolo differenziale

Il calcolo differenziale studia le derivate.

Pensa alla tante funzioni che hai incontrato finora: calcolare il limite del rapporto incrementale per tutte queste funzioni sarebbe un lavoro lunghissimo!

Ecco invece il percorso molto più rapido che seguirai:

- 1. Calcolo le derivate di poche funzioni elementari.
- 2. Studio le regole dell'Algebra delle derivate per calcolare le derivate di tutte le funzioni costruite con quelle elementari.

Esempi di funzioni costruite con 3 funzioni elementari

$$y = \frac{2\sin(x)}{x^3} \qquad y = 2x^3 + \sin(x)$$

Comincia l'algebra delle derivate

In questa lezione cominci a studiare i procedimenti per calcolare le derivate delle funzioni che puoi costruire con quelle elementari. Ecco i primi due procedimenti.

Procedimenti per calcolare la derivata di	Esempi
1. Somma di funzioni elementari	$y = \sin(x) + x^2$
2. Prodotto di funzioni elementari	$y = x^2 \sin(x)$

Richiamo le derivate di funzioni elementari

Funzione	Derivata
y = k	y'=0
y = x	y' = 1
$y = x^{\mathbf{n}}$	$y' = nx^{n-1}$
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$
$y = e^x$	$y'=e^x$
$y = \ln(x)$	$y' = \frac{1}{x}$

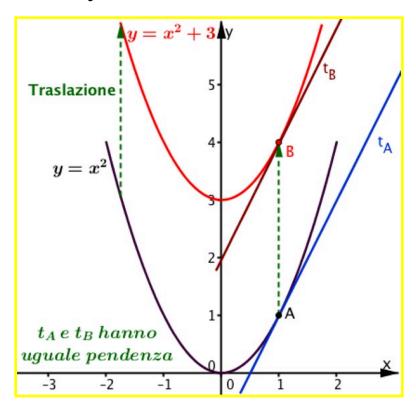
1. Derivare una somma di funzioni

Esempio	In generale	
Sono date $y = x^2$ e $y = \sin(x)$ e so che	Sono date $y = f(x)$ e $y = g(x)$ e so che	
$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = 2x$	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$	
$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \cos(x)$	$\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = g'(x)$	
Calcolo la funzione derivata di	Calcolo la funzione derivata di	
$y = x^2 + \sin(x)$	y = f(x) + g(x)	
1. Calcolo il rapporto incrementale		
$\underline{\Delta y} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x) \right]}{\left[x^2 + \sin(x) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[(x+h)^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right] - \left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = \frac{\left[x^2 + \sin(x+h) \right]}{\left[x^2 + \sin(x+h) \right]} = $	$\frac{\Delta y}{\Delta y} = \frac{\left[f(x+h) + g(x+h)\right] - \left[f(x) + g(x)\right]}{1 + g(x+h)} = \frac{1}{2}$	
Δx h	Δx h	
$=\frac{(x+h)^2 + \sin(x+h) - x^2 - \sin(x)}{h} =$	$= \frac{f(x+h) + g(x+h) - f(x) - g(x)}{h} =$	
$=\frac{(x+h)^2-x^2}{h} + \frac{\sin(x+h)-\sin(x)}{h}$	$= \frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}$	
2. Calcolo il limite del rapporto incrementale per h→0		
$\lim_{h \to 0} \frac{\Delta y}{\Delta x} = 2x + \cos(x)$	$\lim_{h \to 0} \frac{\Delta y}{\Delta x} = f'(x) + g'(x)$	
La derivata di $y = x^2 + \sin(x)$ è	La derivata di $y = f(x) + g(x)$ è	
$y' = 2x + \cos(x)$	y' = f'(x) + g'(x)	
Per derivare la somma di funzioni addiziono le derivate delle singole funzioni		

1. Derivare una somma di funzioni

Per derivare una somma di funzioni addiziono le derivate delle singole funzioni

Funzione somma	Derivata
y = f(x) + g(x)	y' = f'(x) + g'(x)
$y = x^4 + \sin(x)$	$y' = 4x^3 + \cos(x)$

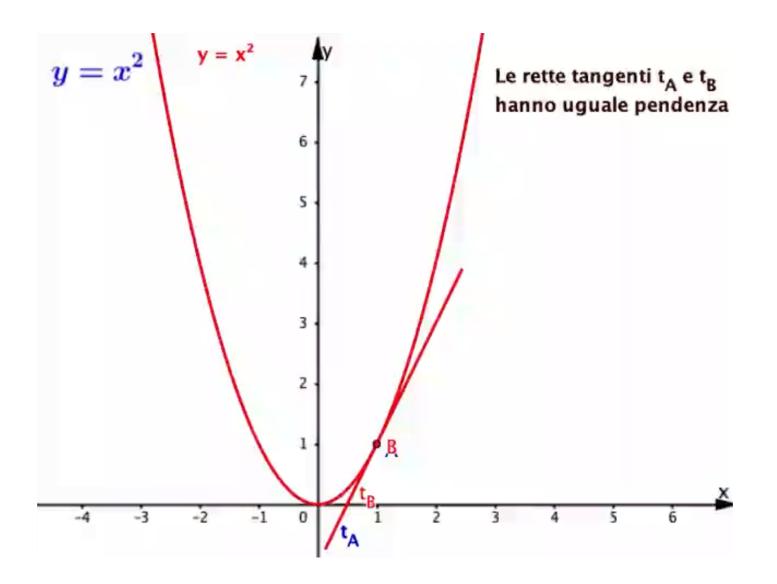

Altri esempi

Funzione somma	Derivata
y = f(x) + g(x)	y' = f'(x) + g'(x)
$y = x^2 + x$	y' = 2x + 1
$y = \sin(x) + \cos(x)$	$y' = \cos(x) + [-\sin(x)] = \cos(x) - \sin(x)$
$y = x^4 + 2$	$y' = 4x^3 + 0 = 4x^3$
$y = \sin(x) + 4$	$y' = \cos(x) + 0 = \cos(x)$

Somma di una funzione con una costante

Gli esempi mostrano il ruolo particolare delle funzioni y = k. Hanno derivata y' = 0, perciò 'scompaiono' nella derivata della somma; ad esempio

 $y = x^2$ e $y = x^2 + 3$ hanno la stessa derivata y' = 2x


Interpretazione grafica.

Da $y = x^2$ si ottiene $y = x^2 + 3$ con una traslazione lungo l'asse y, che 'trascina' anche le tangenti. Perciò le tangenti mantengono la stessa pendenza.

In generale

Tutte le funzioni del tipo y = f(x) + k hanno derivata y' = f'(x)

Video

I calcoli sono sempre così semplici?

Proviamo con la moltiplicazione

Funzioni elementari	Derivata	
$f(x)=x^2$	f'(x)=2x	
$g(x) = x^3$	$g'(x) = 3x^2$	
Funzione prodotto	Derivata	
$h(x) = x^2 \cdot x^3 \Rightarrow h(x) = x^5 \qquad h'(x) = 5x^4$		
Se moltiplico le derivate ottengo		
$f'(x) \cdot g'(x) = (2x) \cdot (3x^2) = 6x^3$ Risultato errato		

Per derivare un prodotto di funzioni NON moltiplico le derivate delle singole funzioni.

2. Derivare un prodotto di funzioni

Esempio

Sono date $y = x^2$ e $y = \sin(x)$ e so che

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = 2x$$

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \cos(x)$$

Calcolo la funzione derivata di

$$y = x^2 \cdot \sin(x)$$

1. Calcolo il rapporto incrementale

$$\frac{\Delta y}{\Delta x} = \frac{(x+h)^2 \cdot \sin(x+h) - x^2 \cdot \sin(x)}{h} =$$

$$(x+h)^2 \cdot \sin(x+h) - x^2 \cdot \sin(x) + x^2 \cdot \sin(x+h) - x^2 \cdot \sin(x+h)$$

Addiziono e sottraggo la stessa espressione per ritrovare rapporti incrementali noti.

$$= \frac{(x+h)^2 - x^2}{h} \sin(x+h) + x^2 \frac{\sin(x+h) - \sin(x)}{h}$$

2. Calcolo il limite del rapporto incrementale per $h\rightarrow 0$

$$\lim_{h \to 0} \frac{\Delta y}{\Delta x} = 2x \sin(x) + x^2 \cdot \cos(x)$$

La derivata di
$$y = x^2 \cdot \sin(x)$$
 è
 $y' = 2x \cdot \sin(x) + x^2 \cdot \cos(x)$

$$\lim_{h \to 0} \sin(x+h) = \sin(x)$$

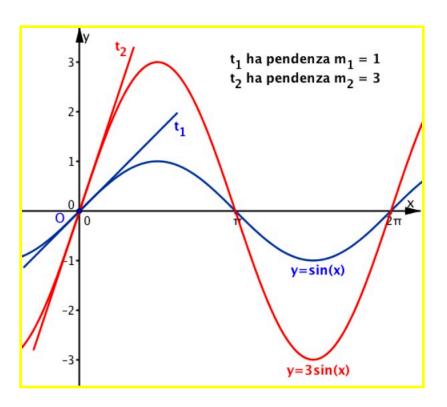
2. Derivare il prodotto di funzioni

Se ripeto gli stessi calcoli in generale trovo il procedimento per derivare il prodotto di due funzioni

Esempio	In generale
Sono date $y = x^2$ e $y = \sin(x)$ e so che $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = 2x$ $\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \cos(x)$ Calcolo la funzione derivata di $y = x^2 \cdot \sin(x)$	Sono date $y = f(x)$ e $y = g(x)$ e so che $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$ $\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = g'(x)$ Calcolo la funzione derivata di $y = f(x) \cdot g(x)$
La derivata di $y = x^2 \cdot \sin(x)$ è $y' = 2x \cdot \sin(x) + x^2 \cdot \cos(x)$	La derivata di $y = f(x) \cdot g(x)$ è $y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

2. Derivare il prodotto di funzioni

Funzione prodotto	Derivata
$y = \mathbf{f}(x) \cdot \mathbf{g}(x)$	$y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$y = x^4 \cdot \sin(x)$	$y' = 4x^3 \cdot \sin(x) + x^4 \cdot \cos(x)$

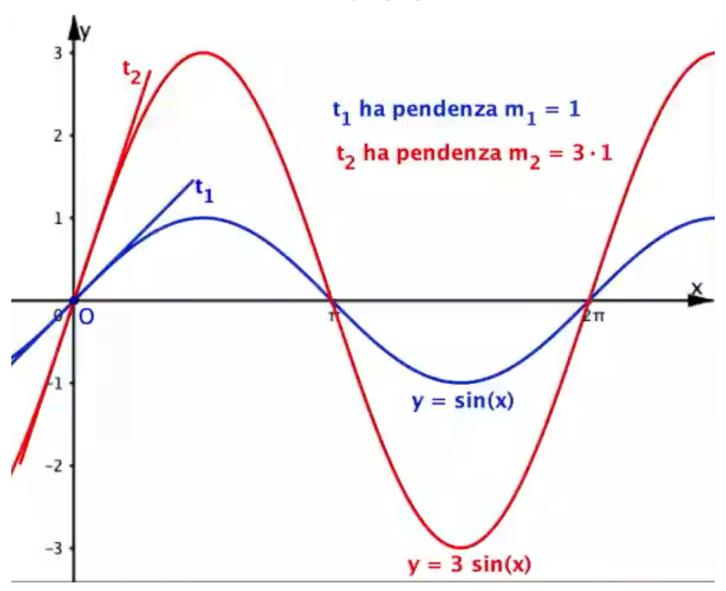

Esempi

Funzione prodotto $y = \mathbf{f}(x) \cdot \mathbf{g}(x)$	Derivata $y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$y = x^4 \cdot \sin(x)$	$y' = 4x^3 \cdot \sin(x) + x^4 \cdot \cos(x)$
$y = \sin(x) \cdot \cos(x)$	$y' = \cos(x) \cdot \cos(x) + \sin(x)[-\sin(x)] = \cos^2(x) - \sin^2(x)$
$y = 3\sin(x)$	$y' = 0 \cdot \sin(x) + 3\cos(x) = 3\cos(x)$
$y = 2x^3$	$y' = 0 \cdot x^3 + 2 \cdot 3x^2 = 6 x^2$
$y = -\sin(x) = (-1) \cdot \sin(x)$	$y' = 0 \cdot \sin(x) + (-1)\cos(x) = -\cos(x)$

Prodotto di una funzione per una costante

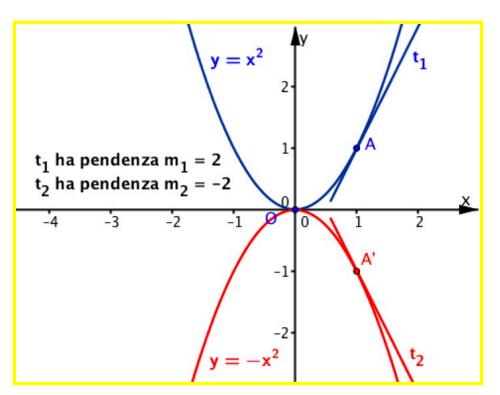
Gli esempi mostrano il ruolo particolare delle funzioni y = k. Queste funzioni hanno derivata y' = 0, perciò 'passano inalterate nella derivata del prodotto'; ad esempio

 $y = \sin(x)$ ha derivata $y' = \cos(x)$ e $y = 3\sin(x)$ ha derivata $y' = 3\cos(x)$


Interpretazione grafica se k>0.

Da $y = \sin(x)$ si ottiene $y = 3\sin(x)$ con una dilatazione lungo l'asse y, che 'si trasmette' anche alle tangenti. Perciò le tangenti triplicano la pendenza.

In generale


Tutte le funzioni del tipo y = kf(x) hanno derivata y'=kf'(x)

Video

Prodotto di una funzione per -1

Anche la costante -1 'passa nella derivata del prodotto'; ad esempio $y=x^2$ ha derivata y'=2x e $y=(-1)x^2$ ha derivata y'=(-1)2x, cioè $y=-x^2$ ha derivata y'=-2x

Interpretazione grafica.

Da $y = x^2$ si ottiene $y = -x^2$ con una simmetria attorno all'asse delle x, che 'trascina' anche le tangenti. Perciò le tangenti cambiano il segno della pendenza.

In generale

Le funzioni del tipo y = -f(x) hanno derivata y' = -f'(x)

Attività

Completa la scheda di lavoro per applicare i procedimenti che hai imparato.

Riflessioni sulle risposte

Quesito 1

Applica le regole studiate per calcolare derivate

Funzione	Derivata	Procedimenti
A. $y = 3x^2$	$y' = 3 \cdot 2x$ da cui	Derivata di $y = x^2$ è $y' = 2x$
	y' = 6x	Derivata di funzione $y = kf(x)$
B. $y = 4$	y'=0	Derivata di funzione $y = k$
C. $y = 3x^2 + 4$	y' = 6x	Derivata della somma di A e B
D. $y = -2x$	y' = -2	Derivata di $y = x \ e y' = 1$
		Derivata di funzione $y = kf(x)$
E. $y = 3x^2 - 2x + 4$	y' = 6x - 2	Derivata della somma di C e D

Quesito 2. Derivata di un polinomio

Esempio

$$y=3x^{2}-2x+4$$

$$\downarrow \qquad \qquad \downarrow$$

$$y'=3\cdot 2x^{2}-2\cdot 1+0 \Rightarrow y'=6x-2$$

Polinomio è una funzione del tipo

$$y = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0$$

La derivata è

$$y' = na_n x^{n-1} + \dots + 2a_2 x + a_1$$

Quesito 2. Derivata di un polinomio

Altro esempio

$$y = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{3}{2}x^2 - x + 5$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$y' = \frac{1}{4} \cdot 4x^3 + \frac{2}{3} \cdot 3x^2 - \frac{3}{2} \cdot 2x - 1 + 0 \Rightarrow y' = x^3 + 2x^2 - 3x - 1$$

Quesito 3. Derivata di $y = x^4$

3. Ho scritto la funzione $y = x^4$ nella forma seguente:

$$y = x \cdot x^3$$

Calcola la derivata della funzione scritta qui sopra come prodotto di due funzioni.

$$y = x \cdot x^{3}$$

$$\downarrow$$

$$y' = 1 \cdot x^{3} + x \cdot 3x^{2} = x^{3} + 3x^{3}$$

$$\downarrow$$

$$y' = 4x^{3}$$

Hai ritrovato con un altro procedimento che la derivata di $y = x^4$ è $y' = 4x^3$

Quesito 4. Due procedimenti

- **4.** È data la funzione $y = x^2 (x^3 + 4)$. Calcola la derivata con due procedimenti
 - I. Esegui la moltiplicazione indicata e calcola la derivata del polinomio ottenuto.

$$y = x^5 + 4x^2 \Rightarrow y' = 5x^4 + 4 \cdot 2x \Rightarrow y' = 5x^4 + 8x$$

II. Applica la derivata del prodotto per calcolare la derivata della funzione data.

$$y' = 2x \cdot (x^3 + 4) + x^2(3x^2 + 0) = 2x^4 + 8x + 3x^4 \Rightarrow y' = 5x^4 + 8x$$

Quale procedimento ti sembra più semplice? Il primo

Prima di eseguire i calcoli è importante riflettere per scegliere il procedimento più agevole.

24

Quesito 5. Altre derivate

Funzione	Derivata	Procedimenti
$\mathbf{A.} \ y = 2\sin(x)$	$y' = 2\cos(x)$	Derivata di $f(x) = \sin(x)$ Derivata di $y = hf(x)$
$\mathbf{B.}\ y = -3\cos\left(x\right)$	$y' = -3[-\sin(x)]$ $y' = 3\sin(x)$	Derivata di $g(x) = \cos(x)$ Derivata di $y = kf(x)$
$\mathbf{C.} \ y = 2\sin(x) - 3\cos(x)$	$y' = 2\cos(x) + 3\sin(x)$	Somma di A + B

Enrico Pietropoli, 2022

25

Sintesi dei finora ottenuti

Derivate di funzioni elementari

Funzione	Derivata
y = k	y'=0
y = x	y' = 1
$y = x^{\mathbf{n}}$	$y' = nx^{n-1}$
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$
$y = e^x$	$y'=e^x$
$y = \ln(x)$	$y' = \frac{1}{x}$

Prime regole di algebra delle derivate

Funzione	Derivata
y = f(x)	y'=f'(x)
y = g(x)	y'=g'(x)
y = f(x) + g(x)	y' = f'(x) + g'(x)
$y = f(x) \cdot g(x)$	$y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$