Derivata di somma e prodotto di funzioni derivabili. Esercizi

Richiamo le derivate di funzioni elementari

Funzione	Derivata
y = k	y'=0
y = x	y' = 1
$y = x^{\mathbf{n}}$	$y' = nx^{n-1}$
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$
$y = e^x$	$y'=e^x$
$y = \ln(x)$	$y' = \frac{1}{x}$

Derivata della somma di due funzioni derivabili

1. Calcola le derivate delle funzioni assegnate per completare la seguente tabella

Funzione	Derivata	Procedimento
$y = x^4 + x^3$		
$y = x^2 + e^x$		y = f(y) + g(y) hg nor
$y = x + \operatorname{sen}(x)$		y = f(x) + g(x) ha per $derivata y' = f'(x) + g'(x)$
$y = \cos(x) + e^x$		
$y = \cos(x) + \sin(x)$		
$y = x + \ln(x)$		
$y = x^2 + 4$		
$y = \operatorname{sen}(x) + \sqrt{3}$		y = f(x) + k ha per derivata y' = f'(x)
$y = \cos(x) + \frac{3}{4}$		
$y = 3 + \ln(x)$		

2. Completa il seguente procedimento per calcolare la derivata della somma di tre funzioni derivabili.

Esempio	In generale
$y = x^2 + \operatorname{sen}(x) + \cos(x)$	y = f(x) + g(x) + h(x)
Applico la proprietà associativa	
$y = x^2 + [\operatorname{sen}(x) + \cos(x)]$	$y = f(x) + [\dots \dots]$
Derivo la somma di due funzioni	
$y' = 2x + [\dots]$	$y' = f'(x) + [\dots]$

L'esercizio suggerisce una regola generale: per derivare la somma di n funzioni addiziono le derivate delle singole funzioni

3. Calcola le derivate delle funzioni assegnate per completare la seguente tabella.

Funzione	Derivata
$y = x + x^2 + \operatorname{sen}(x)$	
$y = \operatorname{sen}(x) + \cos(x) + e^x + 5$	
$y = \cos(x) + x^3 + x^4 + \sqrt{2}$	

Derivata del prodotto di due funzioni derivabili

4. Calcola le derivate delle funzioni assegnate per completare la seguente tabella

Funzione	Derivata	Procedimento
$y = x^4 \operatorname{sen}(x)$		
$y = x^2 e^x$		
$y = x^3 \cos(x)$		$y = f(x) \cdot g(x)$ ha per derivata $y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$y = e^x \cos(x)$		
$y = \operatorname{sen}(x) \cos(x)$		
$y = x \ln(x)$		
$y = 4x^2$		
$y = 2\operatorname{sen}(x)$		y = k f(x) ha per derivata y' = k f'(x)
$y = \frac{3}{4}\cos(x)$		<i>y,</i>
$y = 5 \ln(x)$		

5. Calcola le derivate delle funzioni assegnate per completare la seguente tabella

Funzione	Derivata	Procedimento
y = -x		
$y = -x^4$		y = k f(x) ha per derivata y' = k f'(x)
$y = -e^x$		Con $k = -1$ ottengo y = -f(x) ha per derivata
$y = -\operatorname{sen}(x)$		y' = -f'(x)
$y = -\cos(x)$		
$y = -\ln(x)$		

6. Completa il seguente procedimento per calcolare la derivata del prodotto di tre funzioni derivabili.

Esempio

$$y = x^3 \cdot \text{sen}(x) \cdot \cos(x)$$

Applico la proprietà associativa e considero la funzione prodotto di due funzioni $y = x^3 \cdot [sen(x) \cdot cos(x)]$

Derivo il prodotto di due funzioni

$$y' = 3x^{2} \cdot [\dots] + x^{3} \cdot [\dots]' =$$

$$= 3x^{2} \cdot [\dots] + x^{3} \cdot [\dots] + \dots = 3x^{2} \cdot \operatorname{sen}(x) \cdot \cos(x) + x^{3} \cdot \cos(x) \cdot \cos(x) + x^{3} \cdot \operatorname{sen}(x) \cdot [-\cos(x)]$$

L'esercizio 6 suggerisce una regola generale: per derivare il prodotto di n funzioni addiziono n termini che si ottengono dal prodotto stesso sostituendo al primo, al secondo, ... all'n-mo fattore la corrispondente derivata

7. Calcola le derivate delle funzioni assegnate per completare la seguente tabella.

Funzione	Derivata
$y = 4x^2 \operatorname{sen}(x)$	
$y = x^3 \cdot e^x \cdot \cos(x)$	
$y = -x^2 \operatorname{sen}(x)$	
$y = x \cdot e^{x} \cdot \ln(x)$	
$y = 3x^2 \cdot \ln(x)$	

Derivata di somme e prodotti di funzioni derivabili

8. Calcola le derivate delle funzioni assegnate per completare la seguente tabella

Funzione	Derivata
$y = \operatorname{sen}(x) - \cos(x) =$ $= \operatorname{sen}(x) + [-\cos(x)]$	$y' = \cos(x) + \dots$
$y = 4 - 3x^2$	
$y = e^x - 2\mathrm{sen}(x)$	
$y = 2\cos(x) - e^x$	
$y = 3x - \ln(x)$	

Calcola le derivate delle funzioni assegnate negli esercizi da 9 a 15

9.
$$y=2x-3$$
, $y=-\frac{3}{4}x+\frac{1}{4}$, $y=\sqrt{2}x+\sqrt{3}$.

10.
$$y=x^2-x$$
, $y=-2x^2+3x$, $y=3x^2-5x$.

11.
$$y=x^4-x^2+x-5$$
, $y=-4x^5+5x^4-10x^2+20$, $y=\frac{3}{4}x^4-\frac{5}{2}x^2+3x-5$.

12.
$$y=-x^6+2x^3-6$$
, $y=x^4-\frac{2}{3}x^3-\frac{7}{2}x^2+\sqrt{3}$, $y=\frac{4}{3}x^3-\frac{7}{2}x^2+x-\sqrt{5}$.

13. Scrivere la derivata di un polinomio, cioè di una funzione del tipo $y=a_0+a_1x+a_2x^2+...+a_nx^n$.

14.
$$y=(x+1)(x-1)$$
, $y=(x^2+2)(x^2-2)$, $y=(x-1)(x^2+x+1)$
In quanti modi si può organizzare il calcolo di queste derivate?
Qual'è il procedimento più rapido?

15. $y=(2x^2+x)(2x^2-x)$, $y=(x^3+1)(x^3-1)$, $y=x^3(-4x^2+2x-3)$ In quanti modi si può organizzare il calcolo di queste derivate? Qual'è il procedimento più rapido?

16.
$$y = 2 \operatorname{sen}(x) - 3 \cos(x) + \sqrt{2}$$
 $y = \sqrt{2} \cos(x) - \cos(x) - 1$

17.
$$y = (2x^3 + x)\operatorname{sen}(x)$$
 $y = (x^2 - 4x)\cos(x)$

18.
$$y = (3x^4 - 2x)e^x$$
 $y = (2x^5 + 7)e^x$

19.
$$y = [2sen(x) - 3]e^x$$
 $y = [2sen(x) - cos(x)]e^x$

20.
$$y = 2\operatorname{sen}(x)(e^x + 4)$$
 $y = [e^x - \cos(x)]\operatorname{sen}(x)$

21.
$$y = x \ln(x) - x$$
 $y = [x + \ln(x)](x - 1)$