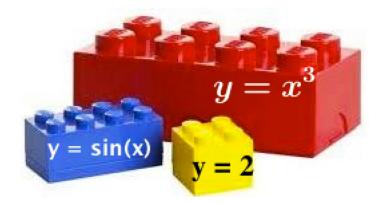

Derivate di funzioni elementari I

Come è organizzato il calcolo differenziale


Il calcolo differenziale studia le derivate.

Pensa alla tante funzioni che hai incontrato finora: calcolare il limite del rapporto incrementale per tutte queste funzioni sarebbe un lavoro lunghissimo!

Ecco invece il percorso molto più rapido che seguirai:

- 1. Calcolo le derivate di poche funzioni elementari.
- 2. Studio le regole dell'Algebra delle derivate per calcolare le derivate di tutte le funzioni ottenute da quelle elementari con procedimenti noti.

 Esempi di funzioni ottenute

$$y = \frac{2\sin(x)}{x^3} \qquad y = 2x^3 + \sin(x)$$

con 3 funzioni elementari

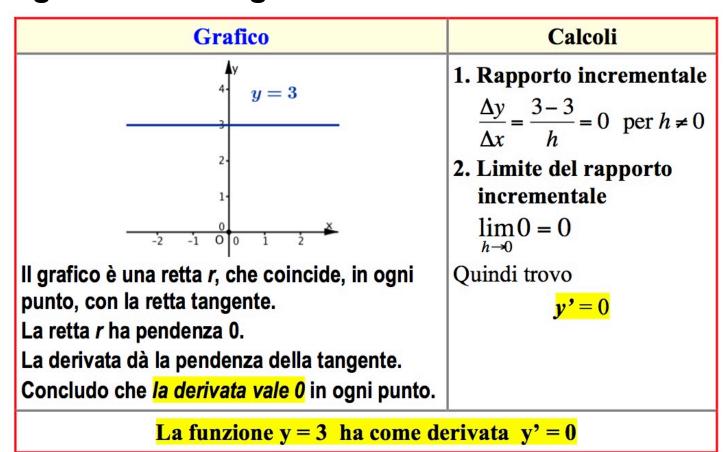
Procedimento

In questa lezione cominci a calcolare la funzione derivata di alcune funzioni elementari.

Il procedimento di calcolo sarà sempre lo stesso:

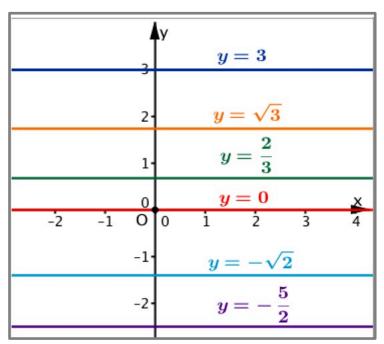
1. Calcolo del rapporto incrementale

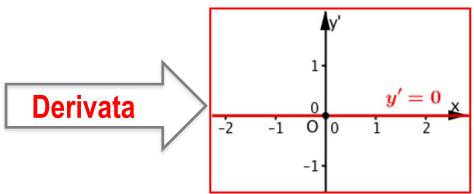
$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$


2. Calcolo del limite del rapporto incrementale

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

Ma lo sviluppo dei calcoli varierà al variare della funzione. E ricorderai sempre di osservare la derivata come pendenza della retta tangente al grafico della funzione.


Derivata di *y = 3*


Cominciamo con una funzione molto semplice ragioniamo con grafico e calcoli

Derivata di tutte le funzioni del tipo y = k

Posso ripetere gli stessi ragionamenti, a partire da tutte le altre funzioni che descrivono rette con pendenza 0. Ecco che cosa trovo.

Le funzioni
$$y = -\frac{5}{2}$$
, $y = -\sqrt{2}$, $y = 0$, $y = \frac{2}{3}$, ..., $y = k$

hanno tutte derivata y' = 0

Derivata della funzione y = sin(x)

Ma i calcoli non sono così semplici per calcolare la derivata di y = sin(x)

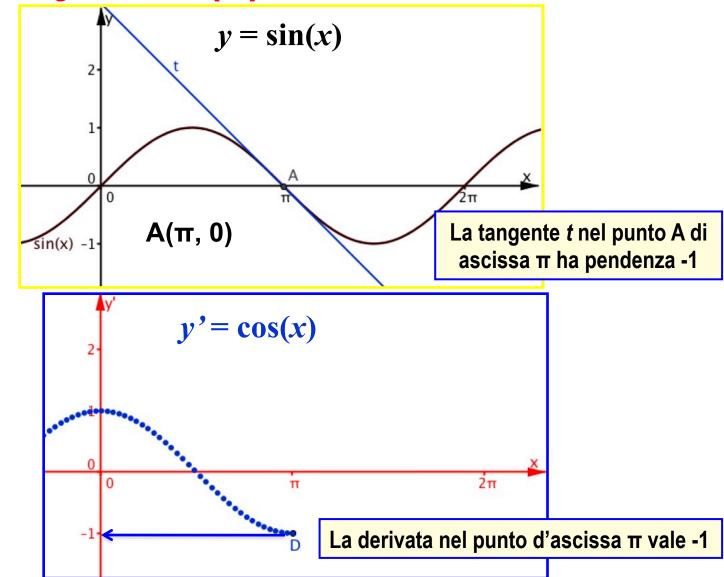
Formula di addizione sin(x + h) =sin(x)cos(h) + cos(x)sin(h)

1. Rapporto incrementale

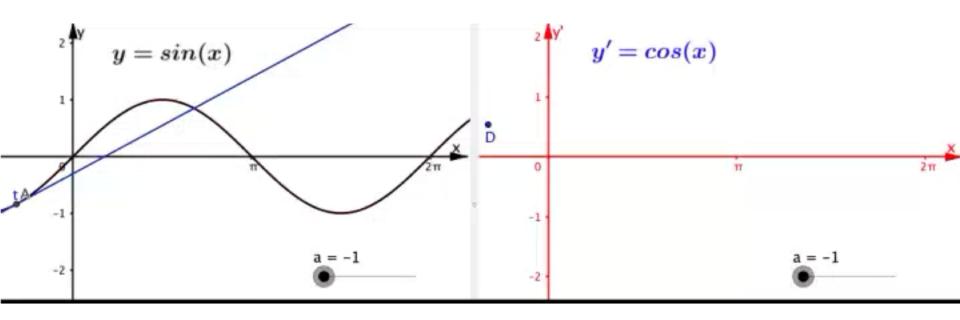
$$\frac{\Delta y}{\Delta x} = \frac{\sin(x+h) - \sin(x)}{h} = \frac{\sin(x) \cdot \cos(h) + \cos(x) \cdot \sin(h) - \sin x}{h} = \sin(x) \cdot \frac{\cos(h) - 1}{h} + \cos(x) \cdot \frac{\sin(h)}{h}$$

2. Limite del rapporto incrementale

$$\lim_{h \to 0} \left[\sin(x) \frac{\cos(h) - 1}{h} + \cos(x) \frac{\sin(h)}{h} \right] = \cos(x)$$


h	-0,1	-0,0001	→0←	0,0001	0,1	
$\frac{\sin(h)}{h}$	0,998334	0,999999998	1	0,999999998	0,998334	
$\frac{\cos(h)-1}{h}$	0,049968	0,00006	0	-0,00005	-0,060439	

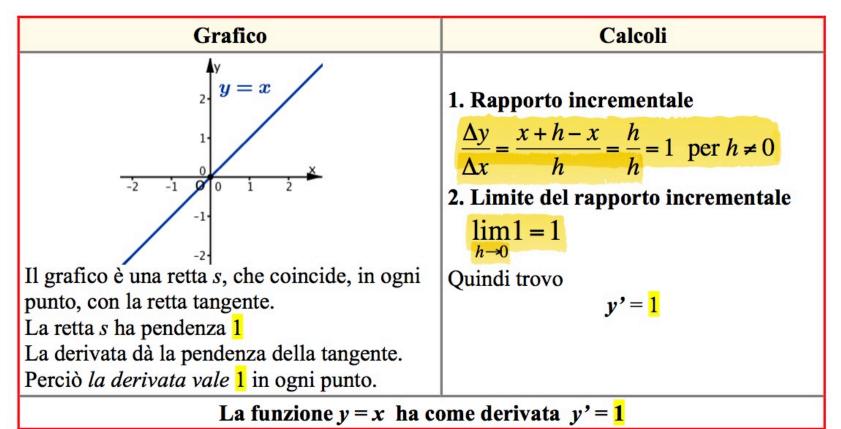
La derivata della funzione y = sin(x)


Abbiamo ottenuto.

- data la funzione y = sin(x)
- la funzione derivata è y' = cos(x).
- Così conosco la derivata di y = sin(x) in tutti i suoi punti, senza dover ripetere il limite del rapporto incrementale. Due esempi:
- la derivata di y = sin(x) nel punto O(0, 0) è cos(0) = 1;
- la derivata di y = sin(x) nel punto $A(\pi, 0)$ è $cos(\pi)$ = -1

Grafico di y = sin(x) e della sua derivata

Video: y = sin(x) e la sua derivata


Attività: derivare altre due funzioni elementari

Completa la scheda di lavoro per calcolare la derivata di:

- \rightarrow y = x.
- > y = cos(x).

Riflessioni sui risultati ottenuti

Quesito 1 La derivata di y = x

y = x ha come derivata y' = 1

Quesito 2 La derivata di y = cos(x)

Calcolo la derivata di y = cos(x)

Formula di addizione del coseno cos(x + h) = cos(x)cos(h) - sin(x)sin(h)

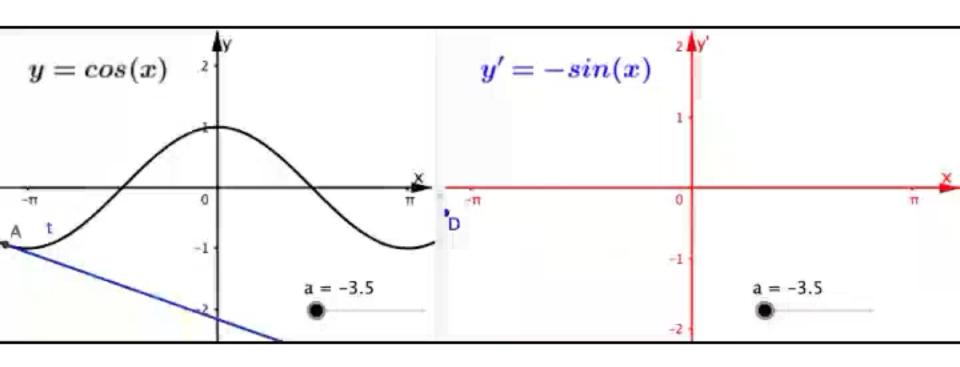
Rapporto incrementale

$$\frac{\Delta f}{\Delta x} = \frac{\cos(x+h) - \cos(x)}{h} = \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h} =$$

$$= \cos(x)\frac{\cos(h) - 1}{h} - \sin(x)\frac{\sin(h)}{h}$$

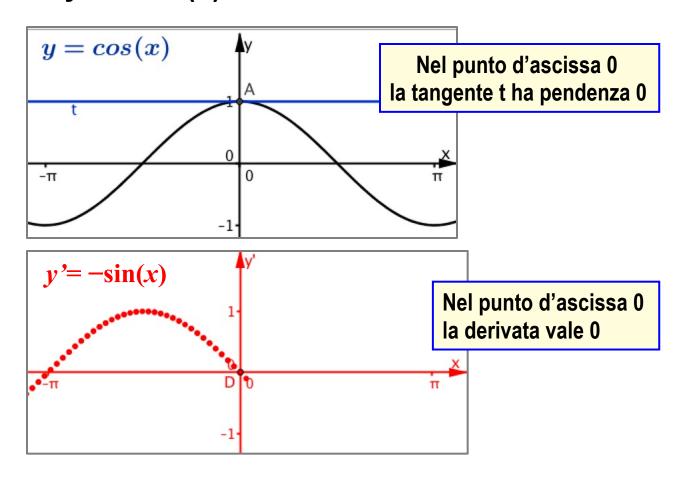
$$\lim_{h \to 0} \frac{\sin(h)}{h}$$

 $\lim_{h \to 0} \frac{\sin(h)}{h} = 1$

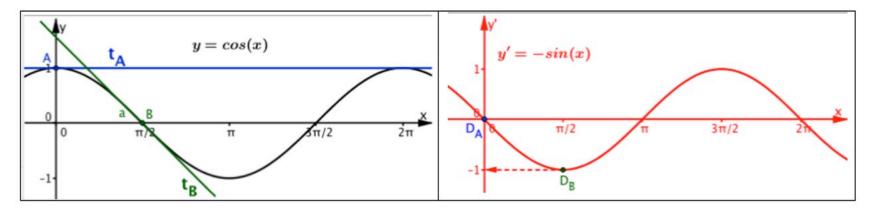

Limite del rapporto incrementale

$$\lim_{h \to 0} \left[\cos(x) \frac{\cos(h) - 1}{h} - \sin(x) \frac{\sin(h)}{h} \right] = -\sin(x)$$

$$\lim_{h \to 0} \frac{\cos(h) - 1}{h} = 0$$


 $y = \cos(x)$ ha come derivata $y' = -\sin(x)$

Video: y = cos(x) e la sua derivata


Grafico di y = cos(x) e della sua derivata

Osserviamo affiancati il grafico della funzione cos(x) e della sua derivata y' = -sin(x)

Quesito 3

- 3. Sono disegnati i grafici di $y = \cos(x)$ e di $y' = -\sin(x)$; rispondi ai seguenti quesiti: a. Indica con A il punto della cosinusoide di ascissa 0 e completa le seguenti frasi:
 - L'ordinata del punto A è data da cos(0) = 1;
 - La pendenza m_A della tangente t_A alla cosinusoide in A è $m_A = -\sin(0) = 0$
 - b. traccia il grafico della retta t_A .
 - c. Indica con B il punto della cosinusoide di ascissa $\pi/2$ e completa le seguenti frasi:
 - L'ordinata del punto **B** è data da $\cos(\pi/2) = 0$;
 - la pendenza m_B della tangente t_B alla cosinusoide in B è $m_B = -\sin(\pi/2) = -1$
 - d. traccia il grafico della retta $t_{\rm B}$.

Sintesi

Ecco le derivate di funzioni elementari calcolate finora

Funzione	Derivata
y = k	<i>y</i> ' = 0
y = x	<i>y</i> ' = 1
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$