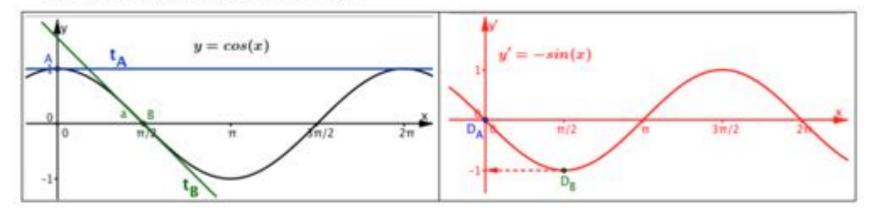
Derivate di funzioni elementari Risposte e commenti all'attività

Quesito 1

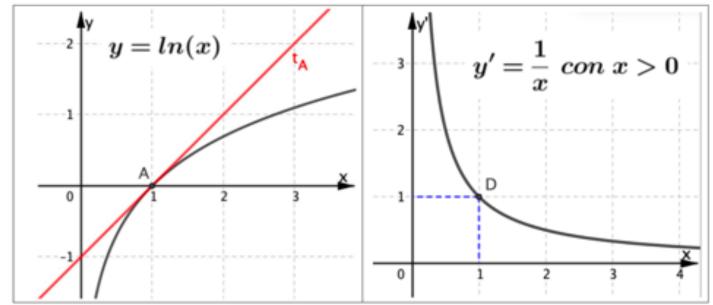
- Sono disegnati i grafici di y = cos(x) e di y' = -sin(x); rispondi ai seguenti quesiti:
 a. Indica con A il punto della cosinusoide di ascissa 0 e completa le seguenti frasi:
 - L'ordinata del punto A è data da cos(0) = 1;
 - La pendenza m_A della tangente t_A alla cosinusoide in $A \stackrel{.}{e} m_A = -\sin(0) = 0$
 - b. traccia il grafico della retta t_A.
 - c. Indica con B il punto della cosinusoide di ascissa $\pi/2$ e completa le seguenti frasi:
 - L'ordinata del punto B è data da cos(π/2) = 0;
 - la pendenza m_B della tangente t_B alla cosinusoide in B è $m_B = -\sin(\pi/2) = -1$
 - d. traccia il grafico della retta t_B.



Quesiti 2a e 2b

- 2. Qui sotto sono disegnati i grafici di $y = \ln(x)$ e della sua derivata $y' = \frac{1}{x}$; completa le frasi e rispondi ai quesiti seguenti:
 - a. Il punto A della curva logaritmica ha ascissa 1; completa le seguenti frasi:
 - L'ordinata del punto A è data da ln(1) = 0;
 - La pendenza m_A della tangente t_A alla curva in $A \in m_A = f'(1) = \frac{1}{1} = 1$

b. traccia il grafico della retta $t_{\rm A}$.



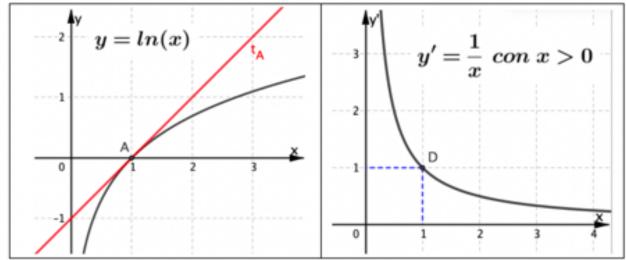
Quesiti 2c e 2d

- 2. Qui sotto sono disegnati i grafici di $y = \ln(x)$ e della sua derivata $y' = \frac{1}{x}$; completa le frasi e rispondi ai quesiti seguenti:
 - c. Puoi trovare sulla curva logaritmica punti con la tangente parallela all'asse delle x? NO
 - d. Motiva la tua risposta.

Varie risposte possibili, come ad esempio la seguente. Un tangente parallela all'asse delle x ha pendenza $m_t = 0$.

La pendenza della tangente in ogni punto è data da $y' = \frac{1}{x}$ con

x>0 perciò non trovo un valore reale di x per cui risulta y'=0.



Calcolare la derivata di y = ln(x) con il limite del rapporto incrementale

La derivata di y = ln(x)

Rapporto incrementale $\frac{\Delta y}{\Delta x} = \frac{\ln(x+h) - \ln(x)}{h} = \frac{\ln\left(\frac{x+h}{x}\right)}{h} = \frac{\ln(a) - \frac{\ln(a)}{h}}{h}$

Proprietà dei logaritmi
$$\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)$$

$$=\frac{\ln\left(1+\frac{h}{x}\right)}{h}=$$

$$\frac{x+h}{x} = \frac{x}{x} + \frac{h}{x} = 1 + \frac{h}{x}$$

$$= \frac{\ln(1+z)}{zx} = \frac{1}{x} \cdot \frac{\ln(1+z)}{z}$$

Nuova variabile

$$z = \frac{h}{x} \Longrightarrow h = zx$$

$$y = \ln(x)$$
 è definito per $x > 0$
perciò $x \neq 0$ e posso dividere per x .

Se
$$h \rightarrow 0$$
 anche $z \rightarrow 0$

Limite del rapporto incrementale

$$\lim_{z\to 0}\frac{1}{x}\cdot\frac{\ln(1+z)}{z}=\frac{1}{x}$$

Limite noto

$$\lim_{z \to 0} \frac{\ln(1+z)}{z} = 1$$

$$z$$
 -0.01 -0.001 $\rightarrow 0$ ← 0.001 0.01 $\frac{\ln(1+z)}{z}$ 1.005 1.0005 $\rightarrow 1$ ← 0.9995 0.995

$$y'=\frac{1}{x}$$