Esercizi tratti dal testo E.Castelnuovo, C.Gori Giorgi, D.Valenti Matematica nella realtà

Il numero e

Gli esercizi dal 35 al 42 conducono ad impadronirsi del numero e e delle sue potenze.

Per svolgere gli esercizi è indispensabile lavorare con un calcolatore tascabile per uso scientifico ed è opportuno tenere presenti le considerazioni svolte nel paragrafo 2.

35. Valendosi del calcolatore tascabile, calcolare il valore dell'espressione

$$(1) \qquad \left(1+\frac{1}{n}\right)^n,$$

in corrispondenza ai seguenti valori di n: 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7 . Valutare, in ogni caso, la differenza fra un valore ed il valore precedentemente ottenuto; che cosa si osserva?

- 36. I calcolatori tascabili più comuni lavorano con numeri che presentano al massimo 8 cifre, perciò non possono distinguere il numero 1 dal numero $1+10^{-8}$. Si riesce a prevedere che cosa succede se proviamo a calcolare il valore dell'espressione (1) in corrispondenza a $n=10^{8}$?
- 37. Completare la seguente tabella valendosi del tasto e, presente sui più comuni calcolatori tascabili per uso scientifico.

Si può prevedere qual'è la massima potenza di *e* che il calcolatore riesce a visualizzare? (V. anche esercizio 100, pag. 596)

38. Completare la seguente tabella, valendosi del calcolatore tascabile.

x	-1	-2	-3	-4	-5	-10	-100	-200
e^x								

Si può prevedere qual'è la minima potenza di *e* che il calcolatore riesce a visualizzare? (V. anche esercizio 102 pag. 597)

39. Completare la seguente tabella valendosi del calcolatore tascabile.

x	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{7}{4}$
e^x								

Scrivere sotto forma di radicale le potenze di e di cui compaiono i valori approssimati nella tabella.

40. Completare la seguente tabella valendosi del calcolatore tascabile.

x	$-\frac{1}{4}$	$-\frac{1}{3}$	$-\frac{1}{2}$	$-\frac{3}{4}$	$-\frac{4}{3}$	$-\frac{3}{2}$	$-\frac{5}{3}$	$-\frac{7}{4}$
ex								

Scrivere sotto forma di radicale le potenze di e di cui compaiono i valori approssimati nella tabella.

41. Completare la seguente tabella valendosi del calcolatore tascabile.

x	$\sqrt{2}$	$\sqrt{3}$	$\sqrt{8}$	$\sqrt{10}$	$\sqrt{20}$	π	2π	$\frac{\pi}{2}$
ex								

42. Completare la seguente tabella valendosi del calcolatore tascabile.

x	$-\sqrt{2}$	$-\sqrt{3}$	$-\sqrt{8}$	$-\sqrt{10}$	$-\sqrt{20}$	$-\pi$	-2π	$-\frac{\pi}{2}$
ex								

Il logaritmo naturale

Gli esercizi dal 43 al 48 conducono ad impadronirsi del logaritmo naturale.

Per svolgere gli esercizi è indispensabile valersi di un calcolatore tascabile per uso scientifico ed è opportuno tenere presenti le considerazioni svolte nel paragrafo 4.

43. Completare la seguente tabella valendosi del tasto **LNx**, presente sui più comuni calcolatori tascabili per uso scientifico.

x	1	2	3	7	8	19	20	54	55
$\ln x$								11 31	

Riprendere la tabella compilata svolgendo l'esercizio 37 ed indicare due numeri interi a e b, tali che ln a < 5 e ln b > 5.

44. Completare la seguente tabella valendosi del calcolatore tascabile.

x	0,37	0,36	0,14	013,	0,05	0,04	0,019	0,018
ln x								

Riprendere la tabella compilata svolgendo l'esercizio 38 ed indicare due numeri a e b, tali che ln a < -5 e ln b > -5.

45. Tenendo presenti le considerazioni sul cambiamento di base, svolte nella Parte prima, paragrafo 9, dimostrare che è vera, per qualunque numero *a* reale positivo, la seguente relazione fra logaritmi decimali e logaritmi naturali:

$$\ln a = \frac{\log a}{\log e}, \quad \text{ossia} \quad \ln a = m \log a.$$

Scrivere il valore approssimato del numero m con due cifre decimali.

46. Ripetere l'esercizio 45 per dimostrare la relazione

$$\log a = \frac{\ln a}{\ln 10}$$
, ossia $\log a = p \ln a$.

Scrivere il valore approssimato del numero p con due cifre decimali. Quale relazione lega il numero p al numero m, calcolato nell'esercizio precedente?

47. Confrontare i logaritmi decimali con quelli naturali, valendosi del calcolatore tascabile per completare le seguenti due tabelle:

I)	x	1	10	100	1000	108	1020	1050	1099
	$\log x$								
	$\ln x$					40 = 1012A			

II)	x	1	e	e^2	e^4	e^{10}	e ⁵⁰	e^{100}	e^{227}
	$\ln x$								
	$\log x$								

48. Ripetere l'esercizio 47 a partire dalle seguenti due tabelle:

I)	X	1	0,1	0,01	0.001	10-8	10-20	10-50	10^{-99}
	$\log x$								
	$\ln x$								

II)	x	1	e^{-1}	e^{-2}	e^{-4}	e^{-10}	e^{-50}	e^{-100}	e^{-227}	
	ln x									
	$\log x$									

Grafico di funzioni esponenziali o logaritmiche in base e

Grafico di $y=e^x$, $y=\ln x$

Gli esercizi dal 49 al 59 conducono ad impadronirsi del grafico delle funzioni $y=e^x$ e $y=\ln x$.

Per svolgere gli esercizi è opportuno tenere presenti le nozioni esposte nel paragrafo 4.

- 49. Tracciare su carta millimetrata il grafico della funzione $y=e^x$, valendosi anche delle tabelle compilate per risolvere gli esercizi 37 e 38.
- 50. Dopo aver svolto l'esercizio 49, tracciare il grafico della funzione $y=e^{-x}$, valendosi della simmetria rispetto all'asse delle y.
- 51. Dopo aver svolto l'esercizio 49, tracciare il grafico della funzione $y=\ln x$, valendosi della simmetria rispetto alla bisettrice del I e III quadrante.
- 52. Dopo aver tracciato su carta millimetrata il grafico della curva $y=\ln x$, disegnare le seguenti rette secanti la curva, scegliendo un'opportuna unità di misura:
 - a) passante per A(1,0) e $B(2; \ln 2)$.
 - b) passante per A(1,0) e $C(1,5; \ln 1,5)$,
 - c) passante per A(1,0) e $D(1,1; \ln 1,1)$.

Scrivere l'equazione di ciascuna retta e fissare l'attenzione sulla relativa pendenza che cosa si osserva?

53. Svolgendo l'esercizio precedente, si sono considerate tre rette secanti, che intersecano la curva nel punto A(1,0) e in un secondo punto: si osserva che quando il secondo punto si avvicina ad A, la retta secante tende a diventare la tangente t alla curva in A. I risultati dell'esercizio precedente portano ad intuire che la retta t ha pendenza 1.

Verificare che la retta t, tangente alla curva $y=\ln x$ in A(1,0) ha pendenza m=1. (Si può procedere nel modo seguente:

- si considera una retta secante s, congiungendo A(1,0) con un punto P della curva vicino ad A, che si indica con $P[1+h, \ln (1+h)]$;

- si calcola la pendenza m della retta s, data da

$$m=\frac{\ln (1+h)}{h};$$

- si applica la proprietà III di pag. 595, valida anche per i logaritmi naturali, per scrivere:

 $m=ln\ (1+h)^{\frac{1}{h}};$

- invece del numero h, si considera il suo inverso $n=\frac{1}{h}$ e si esamina la relazione:

 $m=ln\left(1+\frac{1}{n}\right)^n$;

- si fa avvicinare P ad A; mentre h diventa sempre più piccolo, n diventa..., $\left(1+\frac{1}{n}\right)^n$ si avvicina a..., m si avvicina a...)
- 54. Dall'esercizio precedente risulta che la retta t, tangente alla curva $y=\ln x$ in A(1,0) ha pendenza m=1.

Scrivere l'equazione della retta t e spiegare perché risulta

$$\ln x \cong x - 1$$

per valori di x vicini ad 1.

55. Dopo aver svolto l'esercizio 54, scrivere l'equazione della retta t', tangente alla curva $y=e^x$, in A'(0,1) e spiegare perché risulta

$$e^x \cong x+1$$

per valori di x vicini a 0.

(Tenere presente che la curva d'equazione $y=e^x$ è simmetrica della y=ln x rispetto alla bisettrice del I e III quadrante, perciò t' è la simmetrica di t...)

- 56. Dopo aver svolto l'esercizio precedente, scrivere l'equazione della retta t'', tangente alla curva d'equazione $y=e^{-x}$ nel punto A''(0,1). (Tenere presente che la curva d'equazione $y=e^{-x}$ è la simmetrica di $y=e^{x}$ rispetto all'asse delle y, perciò t'' è simmetrica di t'...)
- 57. Generalizzare il procedimento indicato nell'esercizio 54, per indicare la pendenza m della retta t tangente alla curva $y=\ln x$ nel suo punto $A(a, \ln a)$. (Considerare la pendenza della retta s che congiunge $A(a, \ln a)$ ed un punto $P[(a+h), \ln (a+h)]$. La retta s ha una pendenza m, data da

$$m = \frac{\ln (a+h) - \ln a}{h}$$
.

Applicare le proprietà dei logaritmi e delle potenze per scrivere

$$m=ln\left[\left(1+\frac{h}{a}\right)^{\frac{a}{h}}\right]^{\frac{1}{a}}$$
.

Invece del numero h, considerare $n = \frac{a}{h}$; si ha:

$$m=ln\left[\left(1+\frac{1}{n}\right)^n\right]^{\frac{1}{a}}$$

Così, quando h diventa sempre più piccolo,

n diventa...,
$$\left[\left(1+\frac{1}{n}\right)^n\right]^{\frac{1}{a}}$$
 si avvicina a..., m si avvicina a...

Si ottiene $m = \frac{1}{a}$)

3. Parte seconda. Esercizi	611
----------------------------	-----

58. Dall'esercizio precedente risulta che la retta t, tangente alla curva $y=\ln x$ in $A(a, \ln a)$ ha pendenza $m=\frac{1}{a}$.

Scrivere l'equazione della retta t e della retta t', tangente alla curva $y=e^x$, in $A'(\ln a,a)$. Scrivendo $b=\ln a$, si ha $a=e^b$ e si può scrivere $A'(b,e^b)$; in tal caso, come si esprime la pendenza m' della retta t'?

(Tenere presente che la curva d'equazione $y=e^x$ è simmetrica della y=ln x rispetto alla bisettrice del I e III quadrante, perciò t' è la simmetrica di t... Si ottiene $m=e^b$)

59. Dopo aver svolto l'esercizio precedente, determinare l'equazione della retta t'', tangente alla curva d'equazione $y=e^{-x}$, nel punto $A''(b,e^{-b})$ e valutarne la pendenza m''. (Tenere presente che la curva l'equazione $y=e^{-x}$ è la simmetrica di $y=e^{x}$ rispetto all'asse delle y, perciò t'' è simmetrica di t'... Si ottiene $m''=-e^{-b}$).

Grafici ottenuti a partire da $y=e^x$ o $y=\ln x$, operando affinità e traslazioni

Gli esercizi dal 60 al 72 conducono ad impadronirsi dei grafici che si possono ottenere operando con affinità e traslazioni a partire dalle curve d'equazione $y=e^x$ o $y=\ln x$.

Per svolgere gli esercizi è opportuno tenere presenti le considerazioni svolte nel paragrafo 5.

60. Tracciare i grafici delle seguenti funzioni:

I)
$$y=e^x$$
, II) $y=2e^x$, III) $y=4e^x$, IV) $y=\frac{1}{2}e^x$, V) $y=\frac{1}{4}e^x$.

Descrivere le trasformazioni che mutano la curva (I) in ciascuna delle altre. (Per le tarsformazioni affini v. anche cap. 1, Parte terza).

61. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=\ln x$$
, II) $y=2 \ln x$, III) $y=3 \ln x$, IV) $y=\frac{1}{2} \ln x$, V) $y=\frac{1}{3} \ln x$.

62. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=e^x$$
, II) $y=e^{2x}$, III) $y=e^{3x}$, IV) $y=e^{\frac{x}{2}}$, V) $y=e^{\frac{x}{3}}$.

63. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=\ln x$$
, II) $y=\ln 2x$, III) $y=\ln 4x$, IV) $y=\ln \frac{x}{2}$, V) $y=\ln \frac{x}{4}$.

64. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=e^x$$
, II) $y=\frac{1}{2}e^{2x}$, III) $y=2e^{\frac{x}{2}}$, IV) $y=\frac{1}{3}e^{\frac{x}{3}}$, V) $y=3e^{3x}$.

65. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=\ln x$$
, II) $y=2 \ln 2x$, III) $y=\frac{1}{4} \ln 4x$, IV) $y=4 \ln \frac{x}{2}$, V) $y=\frac{1}{2} \ln \frac{x}{4}$.

66. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=e^x$$
, II) $y=e^{-x}$, III) $y=-e^x$, IV) $y=-e^{-x}$.

Si può tracciare il grafico di $y=(-e)^x$?

(Per le simmetrie rispetto agli assi coordinati e rispetto all'origine O, v. cap. 1, Parte terza).

67. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=\ln x$$
, II) $y=-\ln x$, III) $y=\ln (-x)$, IV) $y=-\ln (-x)$.

68. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=e^x$$
, II) $y=e^x+1$, III) $y=e^x-2$, IV) $y=e^{x+1}$, V) $y=e^{x-2}$. (Per le traslazioni lungo gli assi, v. cap. 1, Parte terza).

69. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=\ln x$$
, II) $y=\ln x+2$, III) $y=\ln x-3$, IV) $y=\ln (x+2)$, V) $y=\ln (x-3)$.

70. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=e^x$$
, II) $y=1-3e^{x-1}$, III) $y=3+\frac{1}{2}e^{2-x}$.

71. Ripetere l'esercizio 60, a partire dalle seguenti funzioni:

I)
$$y=\ln x$$
, II) $y=4-\frac{1}{3}\ln\left(\frac{3}{2}-x\right)$, III) $y=1+2\ln(x-3)$.

72. Una somma A viene investita in un regime di capitalizzazione continua con un tasso d'interesse annuo r; in quanto tempo la somma raddoppia? (Si ottiene $t = \frac{\ln 2}{r}$)