Attività: radicali e potenze ad esponente frazionario

1. Completa la tabella qui sotto per collegare le proprietà delle potenze alle regole di calcolo con i radicali.

Proprietà delle potenze n, p indicano numeri naturali	Potenze ad esponente frazionario	Radicali	Esempi numerici
Potenza di potenza $\left(a^n\right)^p = a^{n \cdot p}$	$\left(a^{\frac{1}{n}}\right)^p = \dots$	$\left(\sqrt[n]{a}\right)^p = \dots$	$\left(\sqrt[3]{5}\right)^2 = \dots$
	$\left(a^{\frac{1}{n}}\right)^{\frac{1}{p}} = \dots$	$\sqrt[p]{\sqrt[n]{a}} = \dots$	$\sqrt[3]{\sqrt{3}} = \dots$
Prodotto di potenze con stesso esponente $a^n \cdot b^n = (a \cdot b)^n$	$a^{\frac{1}{n}} \cdot b^{\frac{1}{n}} = \dots$	$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$	$\sqrt[3]{5} \cdot \sqrt[3]{2} = \dots$
Quoziente di potenze con stesso esponente $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	$\frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = \dots$	$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$	$\frac{\sqrt[3]{16}}{\sqrt[3]{2}} = \dots$
Potenza ad esponente intero negativo $a^{-n} = \frac{1}{a^n}$	Potenze ad esponente frazionario negativo $\frac{1}{\frac{p}{a^n}} = a^{-\frac{p}{n}}$	$\frac{1}{\sqrt[n]{a^p}} = \dots$	$\frac{1}{\sqrt[3]{7^2}} = \dots$

2. Completa la tabella seguente per riflettere sulle scritture che sostituiscono le parentesi.

Espressioni scritte con esponenti frazionari		Espressioni scritte con radicali		Come sono sostituite le parentesi?
$(2\cdot8)^{\frac{1}{2}}$	$(a \cdot b)^{\frac{1}{n}}$	$\sqrt{2\cdot 8}$	••••••	Un tratto lungo completa il segno √, in modo da racchiudere l'espressione che era fra parentesi.
$2\cdot 8^{\frac{1}{2}}$	$a \cdot b^{\frac{1}{n}}$	$2\cdot\sqrt{8}$	••••••	Non ci sono parentesi
$2^{\frac{1}{2}} \cdot 8$	$a^{\frac{1}{n}} \cdot b$	$\sqrt{2} \cdot 8$	•••••	
$\left(\frac{16}{2}\right)^{\frac{1}{3}}$	$\left(\frac{a}{b}\right)^{\frac{1}{n}}$	$\sqrt[3]{\frac{16}{2}}$		Il segno √ viene deformato in modo da racchiudere l'espressione che era fra parentesi.
$\frac{16^{\frac{1}{3}}}{2}$	$\frac{a^{\frac{1}{n}}}{b}$	$\frac{\sqrt[3]{16}}{2}$	••••••	
$\frac{16}{2^{\frac{1}{3}}}$	$\frac{a}{b^{\frac{1}{n}}}$	$\frac{16}{\sqrt[3]{2}}$		