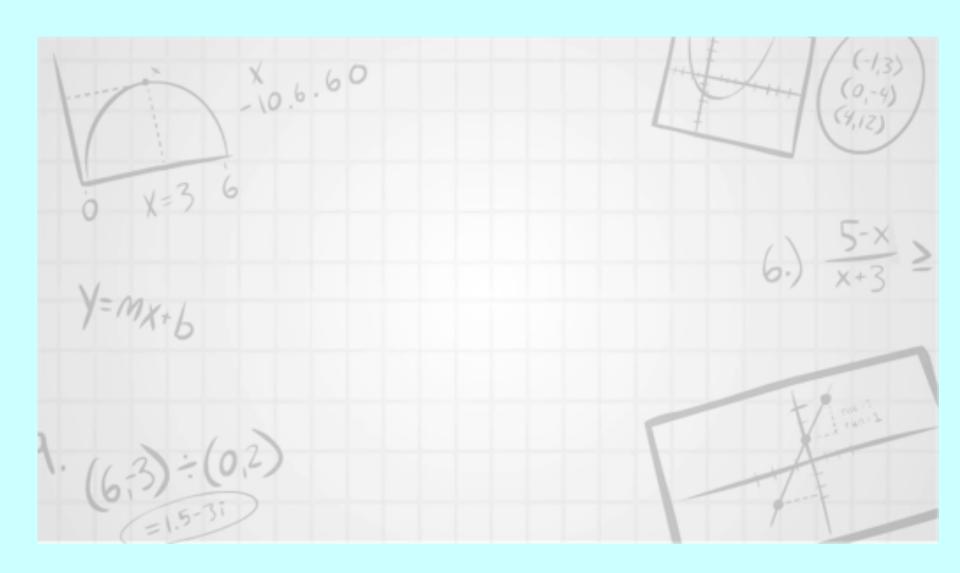
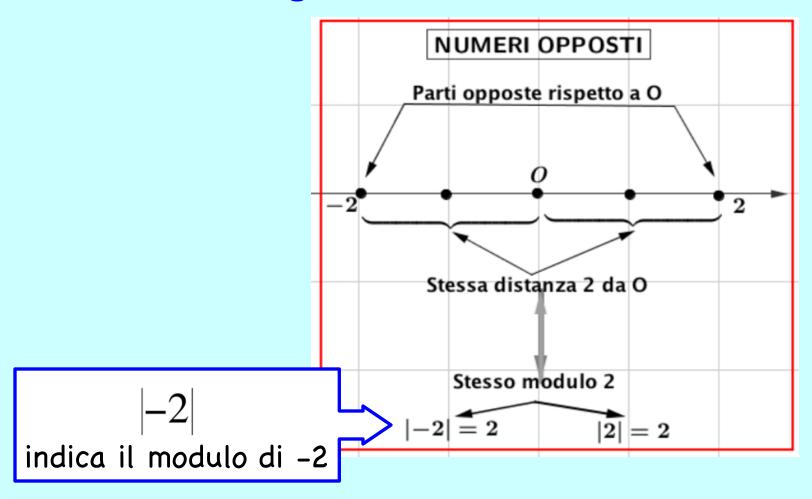
Funzioni definite per casi in matematica

Un video per richiamare una funzione definita per casi che avete già incontrato in matematica.



Modulo (o valore assoluto)

La nozione geometrica



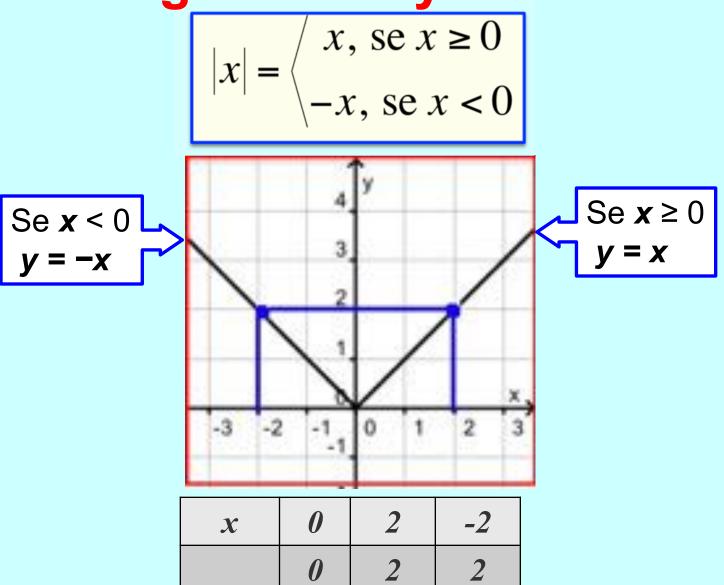
Modulo (o valore assoluto)

La definizione

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$

Il grafico illustra la definizione

Il grafico di y = lxl



Uno sguardo alla storia

La storia del *modulo* è legata alla lunga e controversa storia dei numeri negativi.

I numeri negativi

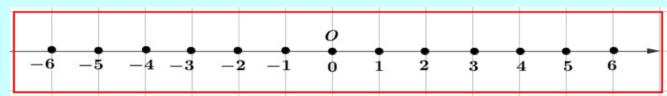
Dei numeri negativi si trovano tracce a partire dal 2000 a.C., ma ancora nel 1500 matematici famosi come Stiefel o Viète li consideravano 'Numeri assurdi'

M. Stifel 1487 - 1567

F. Viète 1540 - 1603

I numeri negativi

Altri matematici 'progressisti', come Stevin e Bombelli, a partire dalla fine del 1500, propongono di rappresentare i numeri su una retta. Così anche i numeri negativi hanno una visualizzazione geometrica.



S. Stevin 1548 - 1620

La scrittura dei numeri negativi

In questo panorama confuso, fra le ricerche dei matematici e le necessità delle applicazioni, si diffondono vari modi di intendere i numeri negativi e il valore assoluto.

Ad esempio, nel 1821 in un famoso testo di analisi di Cauchy si trova:

'il segno + o - messo davanti ad un numero ne modificherà il significato, pressappoco come un aggettivo modifica quello di un sostantivo'.

A. Cauchy 1789 - 1857

Questo forse suggerisce l'idea di 'togliere il segno a un numero' e spiega alcune definizioni che si trovano talvolta ancora oggi.

Un numero relativo è formato dal segno e dal modulo o valore assoluto.

Segno = + e
Modulo o valore assoluto = numero senza segno

```
+3 \rightarrow segno + e valore assoluto 3
-5 \rightarrow segno - e valore assoluto 5
```

La scrittura dei numeri negativi

Dalla fine del 1800 ai primi anni del 1900 ricerche sulla natura e la scrittura dei numeri

20

TYPES OF SERIAL ORDER

Testo di matematica per l'università di Harvard (USA), 1917

22. An example of a discrete series is the class of all integers (positive, negative, and zero), arranged in the usual order:

$$\dots$$
, -3 , -2 , -1 , 0 , $+1$, $+2$, $+3$, \dots

I segni '--' e '+' nei numeri relativi sono esponenti davanti alle cifre

La scrittura dei numeri negativi

20

TYPES OF SERIAL ORDER

Testo di matematica per l'università di Harvard (USA), 1917

22. An example of a discrete series is the class of all integers (positive, negative, and zero), arranged in the usual order:

$$\dots$$
, -3 , -2 , -1 , 0 , $+1$, $+2$, $+3$, \dots

Questa 'scomoda' scrittura è stata abbandonata, ma è rimasto pienamente valido un concetto importante:

Il segno '-' è parte inseparabile di un numero negativo e va distinto dal simbolo di sottrazione.

Perciò non si trova più la definizione: 'valore assoluto = numero senza segno'

Valore assoluto, calcolo letterale e funzioni

"Valore assoluto = numero senza segno" può rimanere una 'regola pratica' per il calcolo numerico?

E che succede quando passo a calcolo letterale e funzioni?

x è 'un contenitore' dove trovo numeri positivi e negativi. NON trovo il 'segno da togliere' ad x.

La funzione valore assoluto

x è 'un contenitore' dove trovo numeri positivi e negativi. NON trovo il 'segno da togliere' ad x.

Capisco allora che debbo 'guardare i numeri contenuti in x' e decidere come procedere.

- Se il numero è positivo o 0 lo lascio inalterato.
- Se il numero è negativo, debbo 'trasformarlo in positivo' e per questo ho il procedimento: la moltiplicazione per (-1).

Ed ecco la funzione valore assoluto

$$|x| = \begin{cases} x & \text{, se } x \ge 0 \\ (-1) \cdot x = -x, \text{ se } x < 0 \end{cases}$$

Le funzioni 'strane' dell'Analisi Matematica

La funzione y = lxl è diventata una componente importante di vari rami della matematica, fra cui la geometria analitica e l'analisi matematica.

E per trovare esempi e controesempi di proprietà caratteristiche delle funzioni in questi campi, i matematici 'inventano' e studiano tante funzioni.

Ecco tre esempi.

Ecco due funzioni da confrontare:

$$y = 1$$

е

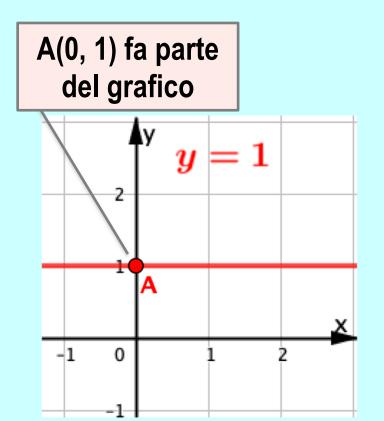
$$y=\frac{x}{x}$$

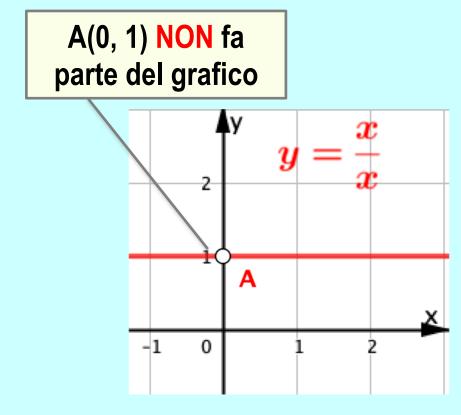
Una tabella

Non	posso
ivide	re per 0!

x	$y=\frac{x}{x}$	y = 1
-3	$\frac{-3}{-3} = 1$	1
0	$\frac{0}{0}$	1
2	$\frac{2}{2} = 1$	1

Ecco i grafici da confrontare

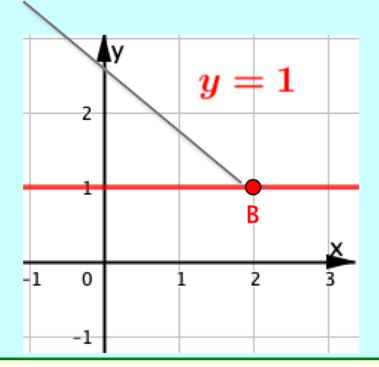




Diversità solo in un punto

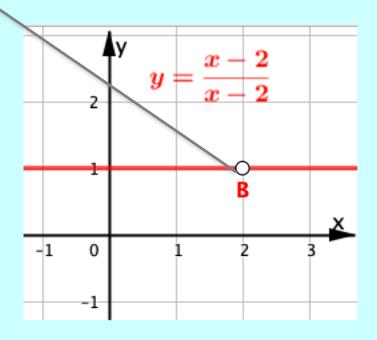
Altre due funzioni da confrontare

B(2, 1) fa parte del grafico



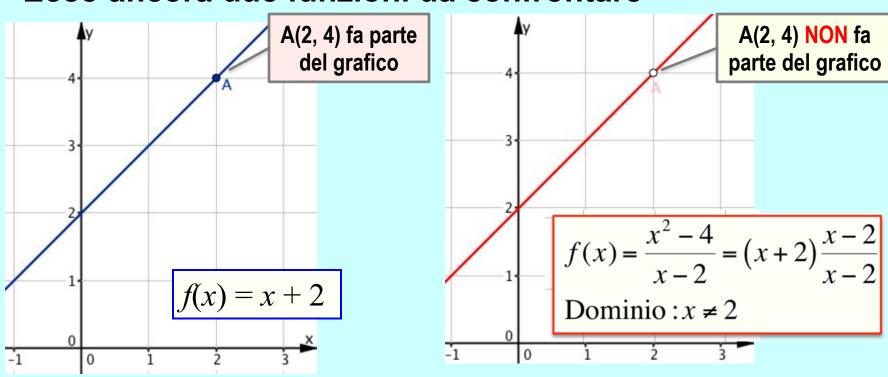
Diversità solo in un punto

B(2, 1) NON fa parte del grafico



Non posso dividere per 0!

Ecco ancora due funzioni da confrontare



Ancora diversità solo in un punto.
Attenzione nel 'semplificare' quozienti di polinomi!

Attività

Completa la scheda di lavoro per esaminare altre funzioni definite per casi della matematica.

Che cosa hai ottenuto

Problema 1

1. Descrivi per casi le seguenti funzioni, di cui preciserai il dominio e traccerai il grafico sui riferimenti cartesiani disegnati sotto.

A.
$$|x| = \begin{cases} x, \text{ se } x \ge 0 \\ -x, \text{ se } x < 0 \end{cases}$$

A.
$$|x| = \begin{cases} x, \sec x \ge 0 \\ -x, \sec x < 0 \end{cases}$$
 B. $|x - x| = \begin{cases} x - x = 0, & \sec x \ge 0 \\ x - (-x) = 2x, \sec x < 0 \end{cases}$ C. $\frac{|x|}{x} = \begin{cases} \frac{x}{x} = 1, \sec x > 0 \\ \frac{-x}{x} = -1, \sec x < 0 \end{cases}$

C.
$$\frac{|x|}{x} = \begin{cases} \frac{x}{x} = 1, \text{ se } x > 0\\ \frac{-x}{x} = -1, \text{ se } x < 0 \end{cases}$$

$$y = |x|$$
, Dominio: R $y = x - |x|$, Dominio R $y = \frac{|x|}{x}$, Dominio R_{θ}

Ricorda Non si può dividere per 0

R₀ indica l'insieme dei numeri reali escluso 0

Ricorda

Problema 2

Quesito a

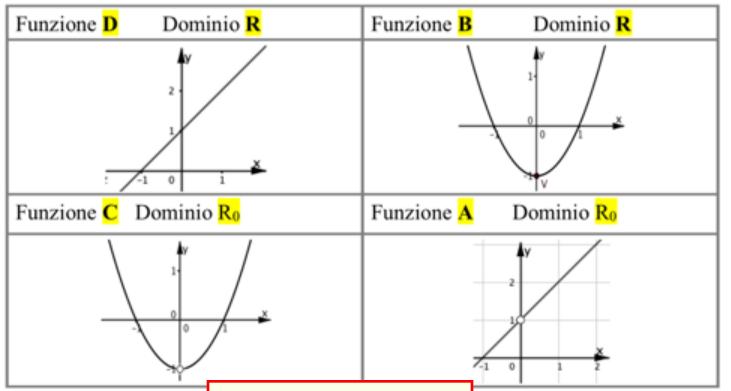
- 2. A partire dalle funzioni e dai grafici dati qui sotto, risolvi i seguenti quesiti:
 - a. Associa ad ogni grafico la corrispondente funzione, di cui indicherai il dominio.

A.
$$y = \frac{x^2 + x}{x}$$
 B. $y = x^2 - 1$ **C.** $y = \frac{x^3 - x}{x}$ **D.** $y = x + 1$

B.
$$y = x^2 - 1$$

C.
$$y = \frac{x^3 - x}{x}$$

D.
$$y = x + 1$$

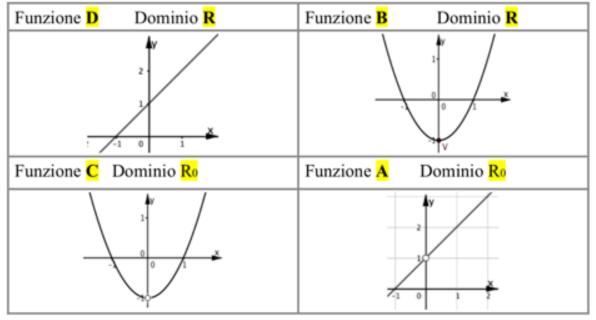


Ricorda

R₀ è l'insieme dei numeri reali escluso 0

Problema 2

Quesiti b, c



b. Spiega perché la funzione C è diversa dalla funzione B.

Varie risposte possibili. Ad esempio: per la funzione **C** risulta $\frac{x^3 - x}{x} = \frac{x}{x}(x^2 - 1)$ e risulta $\frac{x}{x} = 1$ solo se $x \neq 0$; perciò V(0, -1) fa parte della curva **B**, ma non della **C**.

c. Spiega perché la funzione D, m diversa dalla funzione A.

Analogamente il punto (0,1) fa parte della curva D e non della A.

Ricorda Non si può dividere per 0

Una riflessione

Posso creare varie funzioni a partire dalla formula

$$\frac{x^3-x}{x}$$

 $y = x^2 - 1$

Ecco alcuni esempi, con il loro grafico.

Con le funzioni definite per casi posso 'scatenare la fantasia'.

$$f(x) = \frac{x^3 - x}{x}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ 1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x \neq 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x \neq 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x \neq 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^3 - x}{x}, \text{ se } x \neq 0 \\ -1, \text{ se } x \neq 0 \end{cases}$$