Funzioni inverse e radici

Un'attività

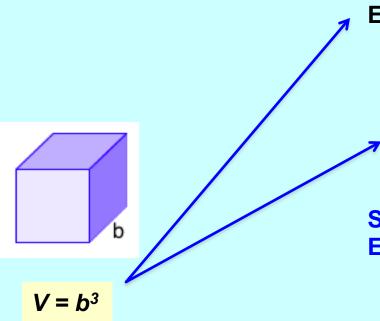
Lavora con la <u>scheda</u> per rivedere e completare quello che già sai.

Due punti fondamentali del tuo lavoro

- Problemi sul volume del cubo affrontati molte volte nella storia dell'umanità.
- Linguaggio e simboli matematici per organizzare la risoluzione di problemi

Rivediamo e ampliamo alcune tappe significative di questo percorso

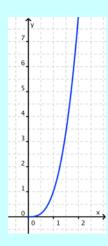
Problemi sul volume V del cubo



Entra
$$b = x$$
 ed esce $V = y$
 $y = x^3$

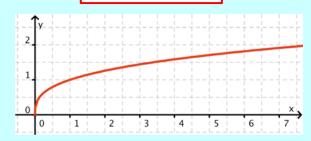
Entra V = x ed esce b = y

$$x = y^3$$



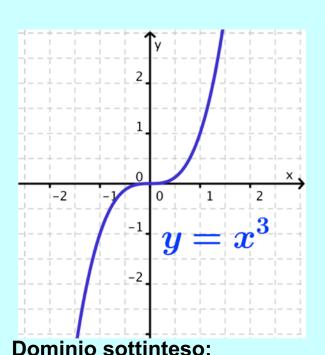
Si esplicita y con un simbolo diffuso in Europa a partire dalla fine del 1400.

$$y = \sqrt[3]{x}$$

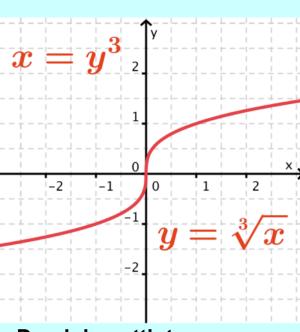


Dal problema geometrico lato b e volume V positivi

Dal cubo alla geometria analitica



Scambio x con y



insieme *R* dei numeri reali

Dominio sottinteso: insieme *R* dei numeri reali

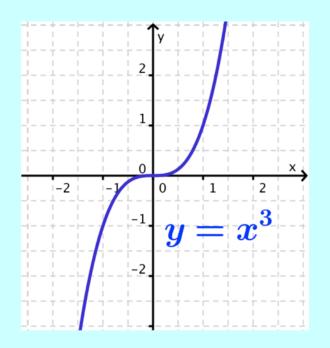
Simboli e linguaggio

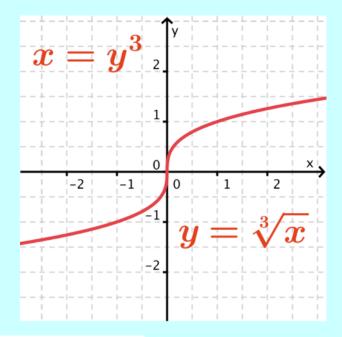
 $\sqrt[3]{-8}$ indica il numero che, elevato al cubo, dà come potenza -8.

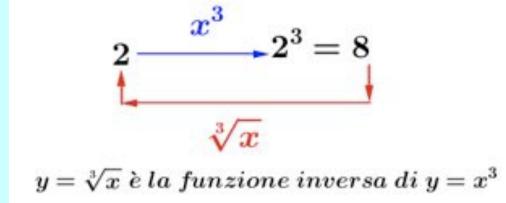
Da
$$x^3 = -8$$
 si ricava $x = \sqrt[3]{-8}$

Si scrive anche
$$\sqrt[3]{-8} = -2$$

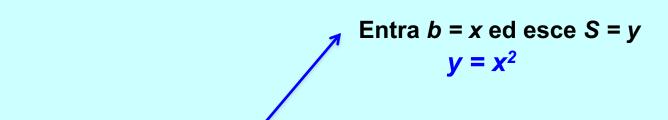
Dal cubo alla funzione inversa







Riprendiamo i problemi sull'area S del quadrato



Entra S = x ed esce b = y

$$x = y^2$$

Si esplicita y con un simbolo diffuso in Europa a partire dalla fine del 1400.

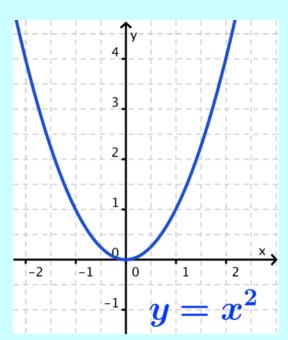
$$y = \sqrt{x}$$



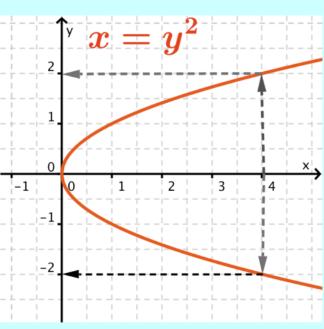
Dal problema geometrico lato b e area S positivi

 $S = b^2$

Dal quadrato alla geometria analitica

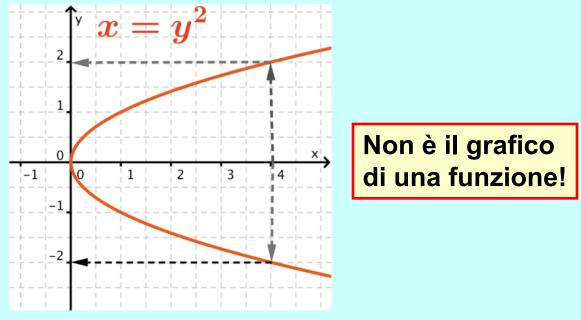


Dominio sottinteso: insieme *R* dei numeri reali



Non è il grafico di una sola funzione!

Dal quadrato alla radice quadrata



Problema storico

Già gli antichi babilonesi calcolano radici quadrate, ma solo durante il 1600 i matematici europei lavorano stabilmente con i numeri negativi.

Come accordare le 'vecchie' radici quadrate con i 'nuovi' numeri negativi?

Dal quadrato alla radice quadrata

Qual è la radice quadrata di 4?

$$2 -2 \pm 2$$
?

Sui libri ho trovato diverse formule:

$$\sqrt{4} = \pm 2$$

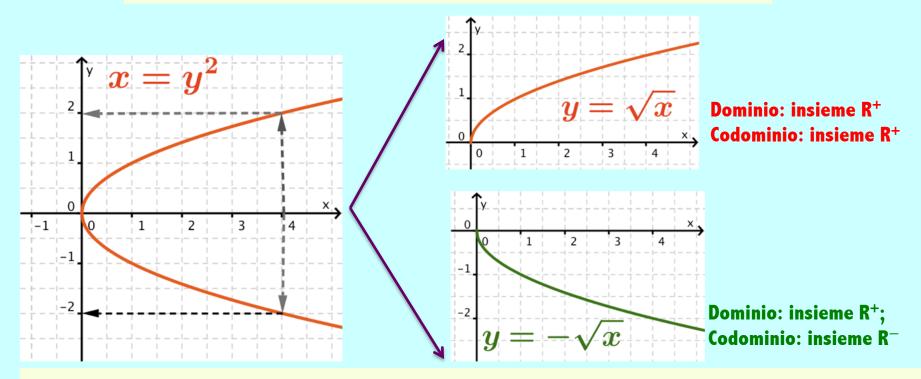
$$\sqrt{4}=2$$

$$\sqrt{4} = \pm 2$$
 $\sqrt{4} = 2$ $\pm \sqrt{4} = \pm 2$

Queste formule sono tutte coerenti con la definizione di funzione condivisa oggi dalla comunità scientifica internazionale?

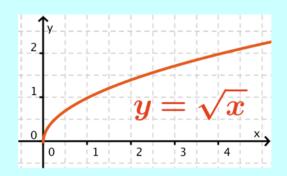
Coerenza con la più recente definizione di funzione

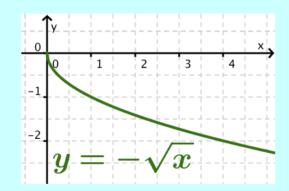
Per descrivere la curva d'equazione $x = y^2$ occorrono due funzioni



Dominio e codominio indicati qui sopra sono sottintesi se ogni funzione è descritta dalla sola formula.

Definizioni e simboli *coerenti* con la più recente definizione di funzione





La radice quadrata di 4 è il numero positivo che, elevato al quadrato, dà come potenza 4.

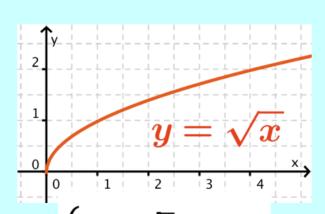
Se risolvo l'equazione $x^2 = 4$ ottengo due soluzioni:

$$x^{2} = 4 \Rightarrow x = \pm \sqrt{4} \Leftrightarrow \begin{cases} x = \sqrt{4} = 2\\ x = -\sqrt{4} = -2 \end{cases}$$

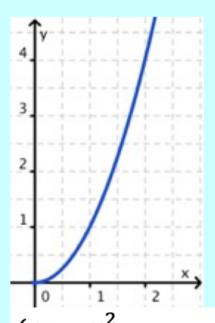
Scrivo

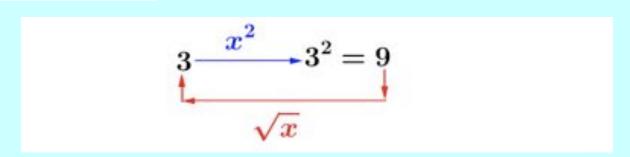
$$\sqrt{4} = 2$$
 $-\sqrt{4} = -2$ $\pm \sqrt{4} = \pm 2$ $\sqrt{4} = \pm 2$

Dal quadrato alla funzione inversa



 $y = \sqrt{x}$ Dominio: R^+ $Codominio: R^+$ R^+ R^+ R^+ R^+





Un'attività

Completa gli <u>esercizi</u> per consolidare quello che hai imparato

Riflessioni sugli esercizi

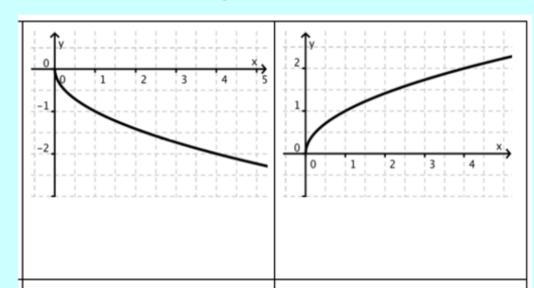
Descrivere funzioni

Il primo esercizio ricorda alcune funzioni che si possono descrivere in due modi:

solo con una formula,

con una formula accompagnata da dominio e

codominio.



A.
$$y = -\sqrt{x}$$

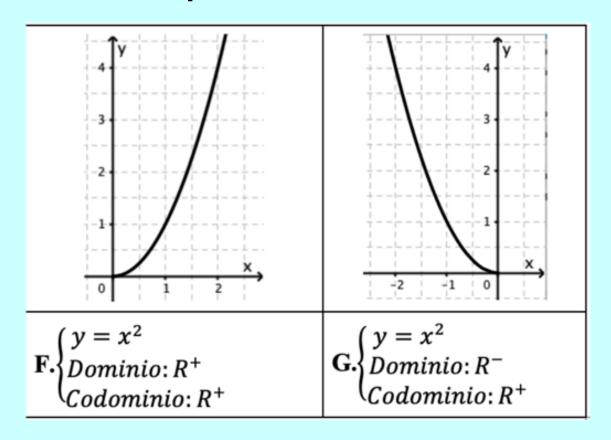
A.
$$y = -\sqrt{x}$$
B. $y = \sqrt{x}$
E.
$$\begin{cases} y = -\sqrt{x} \\ Dominio: R^+ \\ Codominio: R^- \end{cases}$$
D.
$$\begin{cases} y = \sqrt{x} \\ Dominio: R^+ \\ Codominio: R \end{cases}$$

B.
$$y = \sqrt{x}$$

D.
$$\begin{cases} y = \sqrt{x} \\ Dominio: R^+ \\ Codominio: R^+ \end{cases}$$

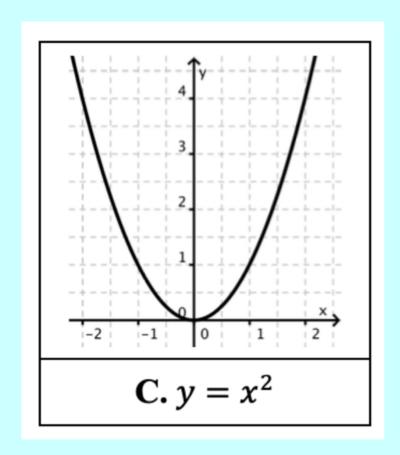
Descrivere funzioni

Ma nel primo esercizio hai trovato anche due funzioni che richiedono di esplicitare dominio e codominio.



Descrivere funzioni

Se scrivo solo la formula $y = x^2$ sottintendo come dominio l'insieme R dei reali.



Frasi e formule

Formule o frasi	Correzioni	Perché bisogna correggere?
$\sqrt{-9} = -3$	Non posso calcolare √-9	Ottengo \sqrt{x} solo se $x \ge 0$ (grafico)
$-\sqrt{-9} = 3$	Non posso calcolare $-\sqrt{-9}$	Ottengo $-\sqrt{x}$ solo se $x \ge 0$ (grafico)
$\sqrt{9} = \pm 3$	$\sqrt{9}=3$	\sqrt{x} è solo il numero positivo, che, elevato al quadrato, dà come potenza x
$\sqrt[3]{27} = \pm 3$	³ √27 = 3	$\sqrt[3]{x}$ ha lo stesso segno di x (grafico)
Non posso calcolare ³ √–27	$\sqrt[3]{-27} = -3$	

