Esponenziale e logaritmo esercizi riassuntivi

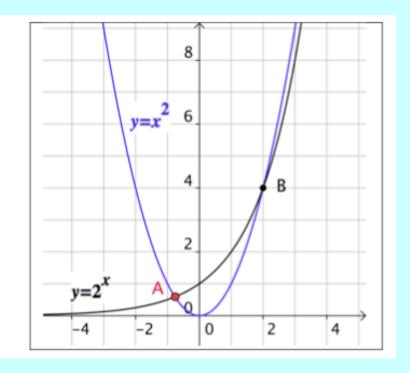
Attività 1. Problemi e quesiti aperti su esponenziale e logaritmo

Completa la risoluzione guidata di problemi e quesiti proposti nella scheda 1.

Siano $f \in g$ le funzioni definite, per ogni x reale, da $f(x) = 2^x \in g(x) = x^2$.

- 1. Si traccino i grafici di f e di g e si indichi con A la loro intersezione di ascissa negativa.
- 2. Si valuti in modo approssimato l'ascissa di A.
- 1. Traccio i due grafici sullo stesso piano cartesiano, dove A è il punto di intersezione richiesto.

x	$y=2^x$	$y = x^2$
-2	$2^{-2} = \frac{1}{2^2} - \frac{1}{4}$	$(-2)^2 = 4$
-1	$2^{-I} = \frac{1}{2}$	$(-1)^2 = 1$
0	$2^0 = 1$	$oldsymbol{0}^2 = oldsymbol{0}$
1	$2^{I}=2$	$1^2 = 1$
2	$2^2 = 4$	$2^2 = 4$
4	2 ⁴ =16	$4^2 = 16$



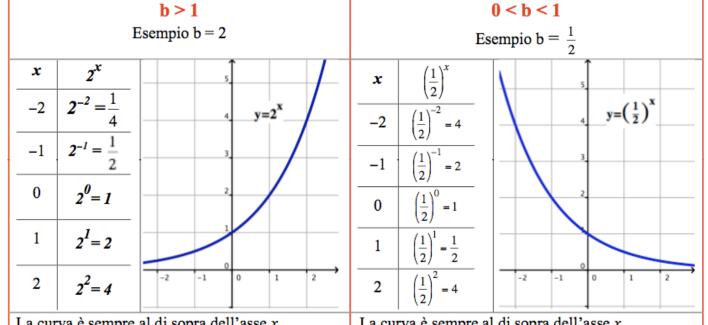
2. Il grafico mostra che l'ascissa x_A del punto A è compresa fra -1 e 0, ma è più vicina a -1; perciò possiamo stabilire che risulta $-1 < x_A < -0.5$ Completo con il tascabile la tabella qui sotto per dimezzare l'intervallo in cui cade l'ascissa di A.

x	-1	-0,75	-0,5
$y=2^x$	0,5	≅ 0,595	≅ 0,707
$y = x^2$	1	≅ 0,562	0,25
$2^{x}-x^{2}$	-0,5	≅ 0,033	≅ 0,457

Un'approssimazione dell'ascissa di $\mathbf{A} \stackrel{.}{e} x_A \cong -0.75$

Nel piano, riferito a coordinate cartesiane Oxy, si consideri la funzione f definita da $f(x)=b^x$ $(b>0, b\ne 1)$.

- 1. Sia G_b il grafico di f(x) relativo ad un assegnato valore di b. Si illustri come varia G_b al variare di b.
- 1. La funzione è la funzione esponenziale con base b. Illustro qui sotto l'andamento della funzione.



La curva è sempre al di sopra dell'asse *x*, crescente e con la concavità verso l'alto.

Risulta
$$\lim_{x \to +\infty} 2^x = +\infty$$
 e $\lim_{x \to -\infty} 2^x = 0$

perciò la curva ha l'asse delle x come asintoto orizzontale solo per $x \rightarrow +\infty$

La curva è sempre al di sopra dell'asse *x*, decrescente e con la concavità verso l'alto.

Risulta
$$\lim_{x \to +\infty} \left(\frac{1}{2}\right)^x = 0$$
 e $\lim_{x \to -\infty} \left(\frac{1}{2}\right)^x = +\infty$

perciò la curva ha l'asse delle x come asintoto orizzontale solo per $x \rightarrow -\infty$

Il valore dell'espressione $\log_2 3 \cdot \log_3 2$ è 1. Dire se questa affermazione è vera o falsa e fornire una esauriente spiegazione della risposta.

NOZIONI DA APPLICARE

Definizione di logaritmo	Cambiamento di base	Potenza di potenza
$y = \log_a x \Leftrightarrow x = a^y$	$\log_b x = \frac{\log_a x}{\log_a b}$	$\left(a^n\right)^p=a^{np}$

Posso seguire due procedimenti

1. Applico prima la proprietà del cambiamento di base e poi la definizione di logaritmo. Ottengo.

$$\log_2 3 \cdot \log_3 2 = \log_2 3 \cdot \frac{\log_2 2}{\log_2 3} = \log_2 2 = 1$$

2. Applico prima la definizione di logaritmo e poi la proprietà di potenza di potenza. Ottengo.

$$x = \log_2 3 \Leftrightarrow 2^x = 3$$

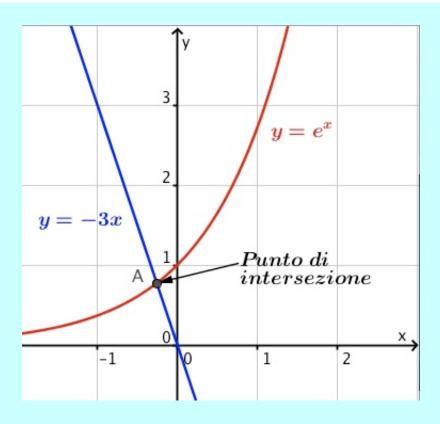
 $z = \log_3 2 \Leftrightarrow 3^z = 2$ sostituisco 2^x al posto di 3^z
 $(2^x)^z = 2 \Rightarrow 2^{xz} = 2 \Rightarrow xz = 1$

Dimostrare che l'equazione $e^x + 3x = 0$ ammette una e una sola soluzione reale.

Risolvo per via grafica l'equazione $e^x + 3x = 0$ ossia $e^x = -3x$.

Ho tracciato qui sotto il grafico delle due linee di equazione $y = e^x e \ y = -3x$

Il grafico mostra che le due curve si intersecano in un solo punto, perciò l'equazione data ha una sola soluzione.



Quest'ultimo quesito ha richiamato un procedimento grafico per risolvere equazioni, che può essere utile in molte occasioni.

Fissiamo l'attenzione su questo procedimento.

Daniela Valenti, 2020

Procedimento grafico

Quesito svolto

Si deve risolvere l'equazione

$$e^x + 3x = 0$$

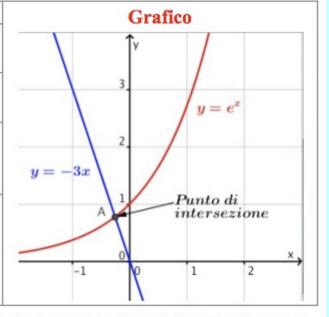
1. Si scrive l'equazione nella forma

$$e^x = -3x$$

2. Si tracciano sullo stesso piano cartesiano le due linee di equazione

$$y = e^x \qquad y = -3x$$

3. Si individua sul piano cartesiano un solo punto di intersezione A delle due curve. L'ascissa x_A del punto A fornisce la soluzione grafica dell'equazione.



Si può completare il procedimento grafico con un'approssimazione della soluzione x_A :

- l'ascissa x_A è compresa fra -1 e θ , ma è più vicina a θ , perciò posso stabilire che:

$$-0.5 < x_A < 0$$

- completo con il tascabile la tabella qui sotto per dimezzare l'intervallo in cui cade x_A .

x	-0,5	-0,25	0
$e^x + 3x$	-0,89	≅ 0,029	1

- concludo che una soluzione approssimata dell'equazione è $x_A = -0.25$.