Algebra dei limiti infiniti l

Procedimenti per calcolare limiti di funzione

Per calcolare il limite di una funzione per x che tende ad un numero a posso seguire un primo procedimento basato su algebra dei limiti finiti e continuità.

Se f(x) è continua in R

basta sostituire a al posto di x

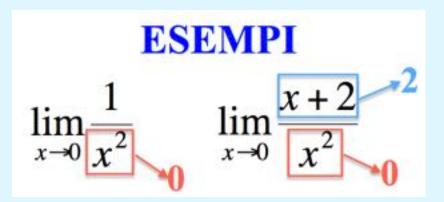
$$y = f(x)$$
 continua nell'insieme $R \Rightarrow \lim_{x \to a} f(x) = f(a)$

Per qualunque numero reale *a*

Restano però dei limiti che non posso calcolare con questo procedimento.

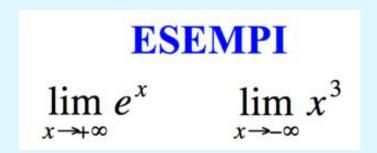
Quali limiti NON posso calcolare con algebra dei limiti finiti e continuità?

I. Limiti di quozienti con denominatore che tende a 0



NON posso dividere per 0

II. Limiti per x che tende a infinito



∞ NON è un numero da sostituire ad *x*

I. Limiti di quozienti con denominatore che tende a 0

Questa presentazione tratta il I caso; al II caso è dedicata la prossima lezione.

Valuto il primo limite

Comincio ad esaminare il primo limite

$$\lim_{x\to 0}\frac{1}{x^2}$$

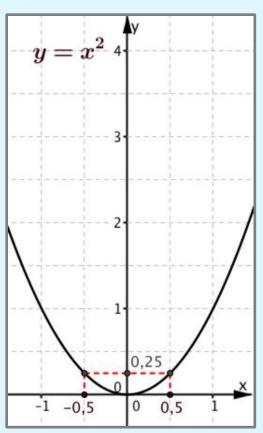
Per valutare questo limite seguo un procedimento basato su grafici, tabelle e il vocabolario matematico richiamato qui sotto.

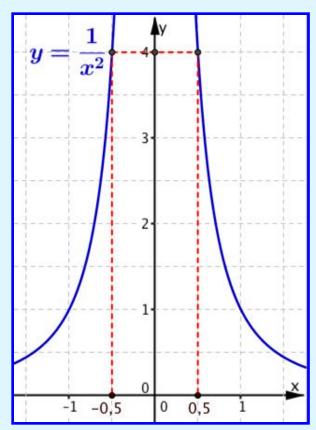
$$\frac{1}{x^2}$$
 è la funzione reciproca di x^2 $\frac{1}{4}$ è il numero reale reciproco di 4

Grafici e tabelle per valutare il primo limite

x	x ²	$\frac{1}{x^2}$
0,5	0,25	$\frac{1}{0,25} = 4$
0,1	0,01	$\frac{1}{0,01}$ = 100
0,01 ↓ 0	0,0001 ↓ 0	$\frac{1}{0,0001} = 10000$
0	0	Non esiste
0	0	∞ ↑
-0,01	0,0001	$\frac{1}{0,0001} = 10000$
		= 10000

$$\lim_{x \to 0} x^2 = 0 \Rightarrow \lim_{x \to 0} \frac{1}{x^2} = \infty$$





Scrivo ∞ perché ora non interessa distinguere +∞ da -∞

Osservazioni sul risultato ottenuto

Numeri reali sempre più vicini a 0 ...

х	x ²	$\frac{1}{x^2}$
0,5	0,25	$\frac{1}{0,25} = 4$
0,1	0,01	$\frac{1}{0,01} = 100$
0,01 ↓ 0	0,0001 ↓ 0	$\frac{1}{0,0001} = 10000$
0		
0	0	Non esiste K
		Non esiste \uparrow $\frac{1}{0,0001} = 10000$
0 0 1	0 0 1	∞ ↑ 1 = 10000

... hanno reciproci sempre più grandi in modulo.

Nell'insieme dei numeri reali 0 non ha reciproco

Una funzione che tende a 0 e la sua reciproca

Il ragionamento seguito ha carattere generale:

'numeri sempre più vicini a zero hanno reciproci sempre più grandi in valore assoluto'.

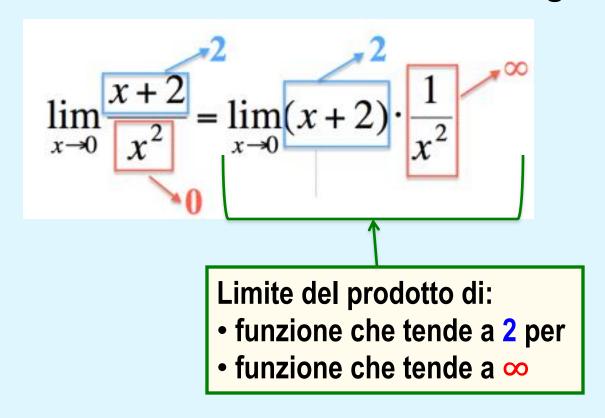
Perciò posso scrivere, per qualunque funzione g(x):

$$\lim_{x \to a} g(x) = 0 \Rightarrow \lim_{x \to a} \frac{1}{g(x)} = \infty$$

Ma rimane senza risultato la divisione 1 : 0

Valuto il secondo limite

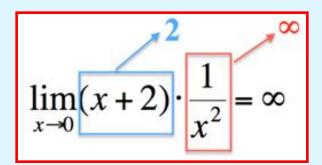
Posso riscrivere il limite nella forma seguente



E' necessaria un'algebra dei limiti infiniti

Grafici e tabelle per scoprire l'algebra dei limiti infiniti

Valuto il secondo limite



Moltiplico numeri sempre più vicini a 2 per numeri sempre più grandi in modulo, ...

х	x +2	$\frac{1}{x^2}$	$(x+2)\cdot\frac{1}{x^2}$
0,5	2,25	$\frac{1}{0,25} = 4$	2,25 · 4 = 9
0,1	2,01	$\frac{1}{0,01} = 100$	2,01 · 100 =201

... ottengo prodotti sempre più grandi in modulo.

0,01	2,0001 ↓ 2	$\frac{1}{0,0001} = 10000$	2,0001 · 10000 = 200010
0	2	Non esiste	Non esiste
0 ↑ -0,01	2 ↑ 2,0001	$\frac{0}{1}$ = 10000	∞ ↑ 2,0001 · 10000 = 200010
-0,1	0,01	$\frac{1}{0,01} = 100$	2,01 · 100 =201
-0,5	0,25	$\frac{1}{0,25} = 4$	2,25 · 4 = 9

Quozienti con denominatore che tende a 0

Il risultato ottenuto porta a valutare il limite di un quoziente con denominatore che tende a 0.

$$\lim_{x \to 0} (x+2) \frac{1}{x^2} = \infty \Rightarrow \lim_{x \to 0} \frac{x+2}{x^2} = \infty$$

Il carattere generale del ragionamento porterebbe a generalizzare il risultato per valutare i limiti del tipo seguente

$$\lim_{x \to a} \frac{f(x)}{g(x)} \quad \text{con } \lim_{x \to a} f(x) = p \text{ e } \lim_{x \to a} f(x) = 0$$

Ma, prima di generalizzare, bisogna riflettere su un caso importante: i quozienti di due funzioni che tendono a 0.

Quozienti di due funzioni che tendono a 0

Due esempi

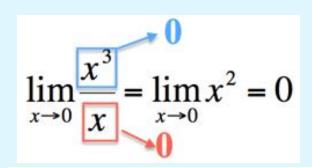
$$\lim_{x \to 0} \frac{x^3}{x} = \lim_{x \to 0} x^2 = 0$$

$$\lim_{x \to 0} \frac{x}{x^3} = \lim_{x \to 0} \frac{1}{x^2} = \infty$$

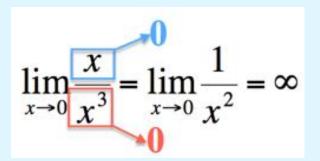
Posso semplificare la frazione perché, durante il calcolo del limite, considero $x \neq 0$.

I grafici aiutano a capire

Quozienti di due funzioni che tendono a 0

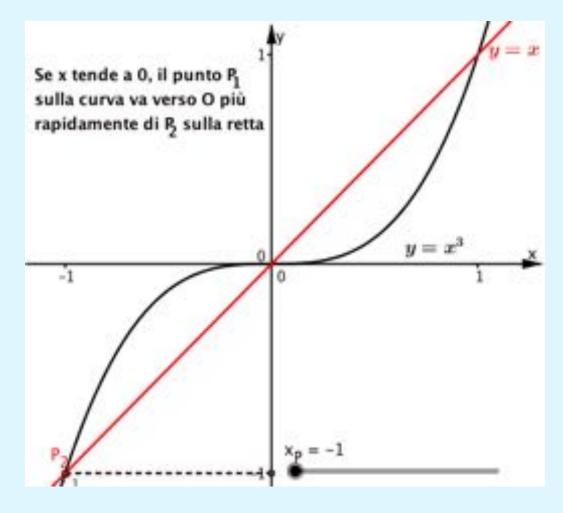


Il numeratore più veloce 'decide' il limite.



Il denominatore più veloce 'decide' il limite.

Due esempi



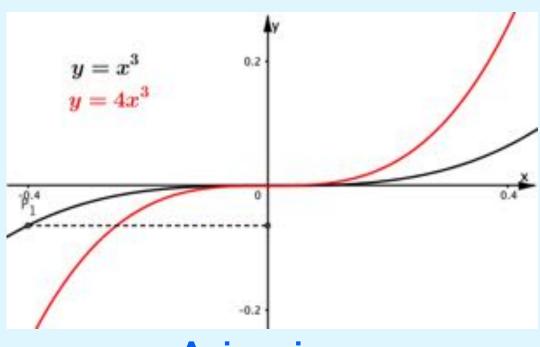
Animazione

Quozienti di due funzioni che tendono a 0

Ancora un esempio

$$\lim_{x \to 0} \frac{4x^3}{x^3} = \lim_{x \to 0} 4 = 4$$

Numeratore e denominatore vanno verso 0 con analoga rapidità.



Animazione

I tre esempi suggeriscono delle conclusioni generali

Quozienti con denominatore che tende a 0

$$\lim_{\substack{x \to a \\ \lim_{x \to a} g(x) = 0}} f(x) = p$$

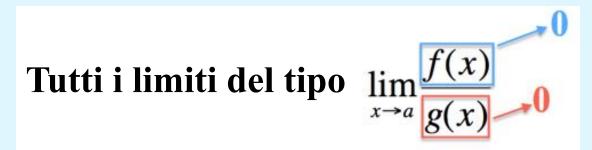
$$\lim_{\substack{x \to a \\ y \to a}} g(x) = 0$$

$$\Rightarrow \lim_{\substack{x \to a \\ g(x)}} f(x) = \infty$$
solo se $p \neq 0$

Regola valida per qualunque coppia di funzioni f(x) e g(x).

Invece, se p = 0, il risultato del limite dipende dalle funzioni che compaiono al numeratore e denominatore

Vocabolario matematico



prendono il nome di 'Forme indeterminate del tipo 0/0' [si legge 'forme indeterminate del tipo zero su zero]

Non riesco a determinare il risultato di queste forme indeterminate solo con l'algebra dei limiti finiti e infiniti.

Un'osservazione

Qui il simbolo 0/0 descrive in breve il limite di un quoziente di due funzioni *che tendono a 0.*

Rimane il 'divieto aritmetico' di dividere per 0.

Algebra dei limiti infiniti

Ora riprendo un altro limite valutato prima per generalizzare il risultato.

$$\lim_{x \to 0} (x+2) \frac{1}{x^2} = \infty$$

Il risultato suggerisce le seguenti indicazioni

$$\lim_{\substack{x \to a \\ \lim_{x \to a} g(x) = \infty}} f(x) = p$$

$$\lim_{\substack{x \to a \\ \lim_{x \to a}}} g(x) = \infty$$

$$\Rightarrow \lim_{\substack{x \to a \\ \lim_{x \to a}}} f(x) \cdot g(x) = \infty$$
Solo se $p \neq 0$

Algebra dei limiti infiniti

$$\lim_{\substack{x \to a \\ \lim_{x \to a} g(x) = \infty}} f(x) = p$$

$$\lim_{\substack{x \to a \\ x \to a}} g(x) = \infty$$

$$\Rightarrow \lim_{\substack{x \to a \\ x \to a}} [f(x) \cdot g(x)] = \infty \text{ solo se } p \neq 0$$

Tutti i limiti del tipo
$$\lim_{x\to a} f(x) \cdot g(x)$$

prendono il nome di 'Forme indeterminate del tipo $0.\infty$ '

Un'osservazione

Qui il simbolo $0 \cdot \infty$ descrive in breve il limite di un prodotto di due funzioni, una che <u>tende</u> a 0 e *l'altra che <u>tende</u> a \infty.*

Resta inalterata l'avvertenza più volte ricordata:

∞ non è un numero con il quale eseguire operazioni.

Sintesi delle regole di Algebra dei limiti infiniti l

$$\lim_{x \to a} g(x) = 0 \Rightarrow \lim_{x \to a} \frac{1}{g(x)} = \infty$$

$$\lim_{x \to a} g(x) = 0 \Rightarrow \lim_{x \to a} \frac{1}{g(x)} = \infty$$

$$\lim_{x \to a} f(x) = p$$

$$\lim_{x \to a} g(x) = 0$$

$$\lim_{\substack{x \to a \\ \lim_{x \to a} g(x) = \infty}} f(x) = p$$

$$\lim_{\substack{x \to a \\ \lim_{x \to a}}} g(x) = \infty$$

$$\Rightarrow \lim_{\substack{x \to a \\ \lim_{x \to a}}} f(x) \cdot g(x) = \infty$$
solo se $p \neq 0$

Sono forme indeterminate tutti i limiti del tipo

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

