
## Esercizi su funzioni inverse e radici

I. Qui sotto trovi prima sette funzioni e poi cinque grafici; associa ad ogni funzione il corrispondente grafico.

$$\dots y = -\sqrt{x} \quad \dots y = \sqrt{x} \quad \dots y = x^2 \quad \dots \begin{cases} y = \sqrt{x} \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \begin{cases} y = -\sqrt{x} \\ Dominio: R^+ \\ Codominio: R^- \end{cases} \quad \dots \begin{cases} y = x^2 \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \begin{cases} y = x^2 \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \begin{cases} y = x^2 \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \begin{cases} y = x^2 \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \begin{cases} y = x^2 \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \begin{cases} y = x^2 \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \begin{cases} y = x^2 \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \begin{cases} y = x^2 \\ Dominio: R^+ \\ Codominio: R^+ \end{cases} \quad \dots \end{cases}$$



II. Le seguenti frasi o formule sono tutte errate. Correggile.

| Frase o formula                     | Correzioni | Perché bisogna correggere? |
|-------------------------------------|------------|----------------------------|
| $\sqrt{-9} = -3$                    |            |                            |
| $-\sqrt{-9}=3$                      |            |                            |
| $\sqrt{9} = \pm 3$                  |            |                            |
| $\sqrt[3]{27} = \pm 3$              |            |                            |
| Non posso calcolare $\sqrt[3]{-27}$ |            |                            |

## Sulle funzioni $y=\sqrt[n]{x}$

Tracciare il grafico delle coppie di funzioni assegnate negli esercizi dal n. 111 al n. 116, spiegando brevemente il procedimento seguito.

| 1 0  |                                                                                   |                 |                                                                                             |                 |                           |                 |  |  |
|------|-----------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------|-----------------|---------------------------|-----------------|--|--|
| 111. | $y=x^3$                                                                           | $y=\sqrt[3]{x}$ | 112.                                                                                        | $y=x^5$         |                           | $y=\sqrt[5]{x}$ |  |  |
| 113. | $y=x^2$                                                                           | $y=\sqrt{x}$    | 114.                                                                                        | $y=x^4$         |                           | $y=\sqrt[4]{x}$ |  |  |
|      |                                                                                   |                 |                                                                                             |                 |                           |                 |  |  |
| 115. | <i>y</i> = <i>x</i> <sup>6</sup>                                                  | $y=\sqrt[6]{x}$ | <sub>2</sub> 116.                                                                           | $y=x^7$         |                           | $y=\sqrt[7]{x}$ |  |  |
| 117. | Completare le seg<br>- da $y^2$ =16<br>- da $y^2$ =-16                            | si              | i:<br>ottengono i due nu                                                                    |                 | y=±                       |                 |  |  |
|      | - da $y^2 = 10$<br>- da $y^2 = 5$<br>- da $y^2 = -5$                              | si              | ottengono i due nu                                                                          | meri            | y=±                       |                 |  |  |
| 118. | Completare le se - da $y^3$ =8 - da $y^3$ =-8                                     | Si              | si: i ottiene il numero i ottiene il numero                                                 |                 | <i>y</i> =<br><i>y</i> =  |                 |  |  |
|      | - da $y^3$ =3<br>- da $y^3$ =-3                                                   | S               | i ottiene il numero<br>i ottiene il numero                                                  |                 | <i>y</i> =,<br><i>y</i> = |                 |  |  |
| 119. | Completare le seguenti frasi:<br>- da $y^4$ =81 si ottengono i due numeri $y=\pm$ |                 |                                                                                             |                 |                           |                 |  |  |
|      | - da $y^4$ =-81<br>- da $y^4$ =7<br>- da $y^4$ =-7                                | s               | i ottengono i due nu                                                                        |                 | y=±                       |                 |  |  |
| 120. | Completare le se                                                                  | ouenti fra      | si•                                                                                         |                 |                           |                 |  |  |
| 120. | - da $y^5$ =243<br>- da $y^5$ =-243<br>- da $y^5$ =15<br>- da $y^5$ =-15          | S<br>S<br>S     | i ottiene il numero<br>ii ottiene il numero<br>ii ottiene il numero<br>ii ottiene il numero |                 | y=<br>y=<br>y=<br>y=      |                 |  |  |
| 121. | a. «Estraendo la                                                                  | a radice qu     | si, spiegandone il si<br>iinta di un numero n<br>iarta di un numero n                       | egativo si ha   |                           | »;              |  |  |
| 122. | <ul> <li>a. «Estraendo l</li> </ul>                                               | a radice qu     | si, spiegandone il si<br>uinta di un numero p<br>uarta di un numero p                       | ositivo si ha . | ino                       | »;<br>».        |  |  |